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Adaptive metabolic pattern biomarker for disease monitoring
and staging of lung cancer with liquid biopsy
Manuel Garcia-Algar1, Ana Fernandez-Carrascal1, Ana Olano-Daza2, Luca Guerrini1, Neus Feliu3,4, Wolfgang J. Parak4,
Roger Guimera 5,6, Eduardo Garcia-Rico2 and Ramon A. Alvarez-Puebla 1,6

In this manuscript, we demonstrate the applicability of a metabolic liquid biopsy for the monitoring and staging of patients with
lung cancer. This method provides an unbiased detection strategy to establish a more precise correlation between CTC
quantification and the actual burden of disease, therefore improving the accuracy of staging based on current imaging techniques.
Also, by applying statistical analysis techniques and probabilistic models to the metabolic status and distribution of peripheral
blood mononuclear cell (PBMC) populations “perturbed” by the presence of CTCs, a new category of adaptive metabolic pattern
biomarker (AMPB) is described and unambiguously correlated to the different clinical stages of the patients. In fact, this strategy
allows for classification of different categories of disease within a single stage (stage IV) before computed tomography (CT) and
positron emission tomography (PET) scans and with lower uncertainty.
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INTRODUCTION
Lung cancer is the second most common tumor malignancy and is
a leading cause of cancer death worldwide in both, women and
men (1.69 million deaths in 2015) http://www.who.int/
mediacentre/factsheets/fs297/en/. According to American Cancer
Society, the incidence of this disease was about 225,500 new
diagnosed cases with 154,050 deaths in 2017 https://www.cancer.
org/cancer/non-small-cell-lung-cancer/about/key-statistics.html.
The mortality of lung cancer (non-small cell lung cancer, NSCLC;
and small-cell lung cancer, SCLC) is very high, resulting from the
early dissemination of cancer cells to secondary sites which are
not detectable by conventional procedures.1 Notably, for stages I
and IV, 5-year survival is 80 and 10%, respectively.2 Thus, early
stages (I–II) are defined by the curability. However, even with
radical surgery, between 30 and 50% of patients at early stages
relapse.3 Stages III are even more heterogeneous, with a 5-year
survival between 13 and 36%. Reason for these high-recurrence
rates, even after radical surgery, is believed to be related to the
presence of micrometastasis or lesions not detected by the
diagnostic staging.4 Thus, methods that perform adequate staging
are not only essential in the diagnosis, but also for detecting
relapses or monitoring the response to therapy.
Currently, the lung cancer staging is based on (i) the tumor-

node-metastasis (TNM) staging system, which typically relies on
images acquired via computed tomography (CT) and positron
emission tomography (PET); and (ii) the anatomopathological
diagnosis.5 However, CT and PET scans suffer from major
limitations in terms of resolution and accuracy. Among others,
radiological lesions compatible with cancer are not always
evident.6 Further, inflammatory or non-specific lesions can be
erroneously identified as tumors in CT or PET.7 Mediastinal lesions

(N2 or T4), which are critical factors in determining resectability of
cancer, are characterized by an unsatisfactory diagnostic accuracy.
In this regard, a meta-analysis including 45 studies has concluded
that, with a standardized uptake value (SUV) cutoff of 2.5, the
sensitivity and specificity of PET-CT were 77.4% and 90.1%,
respectively.8

During the last years, precision medicine has undergone a great
change in lung cancer treatment by describing very individualized
new disease categories9–11 capable of effectively predicting the
response to new treatments.12 However, the application of
precision medicine requires the fine description of the patient
disease at each specific state of the treatment, a task for which PET
and CT scans often turn out to be insufficient. Thus, current clinical
practice demands the definition of new biomarkers to resolve the
limitations of CT and PET techniques. In this scenario, the
quantification of circulating tumor cells (CTCs) in peripheral blood
from cancer patients (liquid biopsy, LB) emerges as a non-invasive
approach capable of overcoming the drawbacks associated with
conventional imaging techniques.13 This new concept of biopsy
relies on the assumption that CTCs detach from primary solid
tumors, enter the bloodstream and, after extravasation, act as
seeds for metastatic colonies.14 In this regard, it is worth noticing
that not all tumor locations have the same behavior in terms of
dissemination or invasion.15 Quantification of CTCs has shown to
have independent prognostic values in colon, breast, and prostate
cancer.16 Differently, studies of pancreatic cancer patients only
displayed a general trend toward an association between CTC
detection and disease progression.17 Although many approaches
for CTC quantification have been developed in recent years, all of
them are antigen-dependent, that is they rely on antibodies
against epithelial receptors, such as the epithelial cell adhesion
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molecule (EpCAM).18–20 Therefore, these methods are unable to
detect cells that do not express the pre-selected markers.21 Thus,
current LB approaches “simply” enumerate a single subpopulation
of CTCs, therefore failing to fully describe the whole hetero-
geneous ensemble of cancer cells, comprising epithelial tumor
cells, cells that underwent the epithelial-mesenchymal transition
(EMT), tumor stem cells, and even clusters of tumor cells.
Alternatively, instead of using markers targeting-specific mem-

brane receptors,22 CTCs can be labeled by profiting from their
characteristic metabolic activity (Warburg effect).23 In this
approach, a glucose analogue labeled with a fluorophore is
added to the cell sample containing CTCs. Then, the larger uptake
of dye-labeled glucose molecules by tumor cells as compared
with normal cells enables their detection by fluorescence
spectroscopy.
In this manuscript, we demonstrate the applicability of this

unbiased detection strategy to (i) establish a more precise
correlation between CTC quantification and the actual burden of
disease, therefore improving the accuracy of staging based on
current imaging techniques (TNM), and (ii) recognize different
categories of disease within a single stage (stage IV). First, we
optimized the conditions for the selective labeling of CTCs,
extracted from human blood samples through a partial enrich-
ment method (Ficoll), for their identification and quantification
independently of their phenotypic features. With this approach, all
subpopulations of CTCs can be detected regardless of the
histological characteristics of the primary tumor and the molecular
variability associated with different stages of the EMT process.
Second, by applying statistical analysis techniques and probabil-
istic models to the metabolic status and distribution of peripheral
blood mononuclear cell (PBMC) populations “perturbed” by the
presence of CTCs, a new category of adaptive metabolic pattern
biomarker (AMPB) is described and unambiguously correlated to
the different clinical stages of the patients.

RESULTS
2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose
(2NBDG) is a non-toxic fluorophore characterized by a quantum
yield of 0.55 and an absorption maximum at 465 nm, which
generates an intense emission centered at 540 nm upon excitation
with a blue laser line. Peripheral blood mononuclear cells (PBMCs)
fractions (lymphocytes and monocytes), extracted through a Ficoll
process from human blood samples obtained from healthy
donors, were spiked with a lung cancer cell line (adenocarcinoma
human alveolar basal epithelial cells, A549) in a 1:100 ratio (cancer:
healthy), and later incubated with a cocktail of: (i) 2NBDG, (ii) anti-
leukocyte common antigen (CD45) labeled with allophycocyanin
(CD45-APC, absorption: 650 nm, emission: 660 nm), and (iii) anti-
cluster of differentiation 14 (CD14) labeled with peridinin-
chlorophyll/Cyanine5.5 (CD14-PerCP/Cy5.5; absorption: 482 nm,
emission: 676 nm). Figure 1a shows the cytometry results for this
sample measured under optimized conditions: 300 µM concentra-
tion of 2NBDG, 30 min of incubation time, and normoxia. The
cytogram exhibits three populations. Specifically, CD45+/CD14
−/2NBDG−, CD45+/CD14+/2NBDG+, and CD45−/CD14
−/2NBDG+ events are ascribed to lymphocytes, monocytes
(macrophages and dendritic cells), and cancer cells (A549),
respectively. Gray events, negative for all labels, are considered
debris.
Normal PBMCs and tumor cells display clear differences in

2NBDG fluorescence intensity, which are consistent with their
different metabolic activity. As previously demonstrated,23 and in
full agreement with the Warburg effect, the 2NBDG uptake can be
further increased by adjusting the oxygen concentration. In this
regard, while the oxygen content has no remarkable effect on the
2NBDG fluorescence of PBMCs, both hypoxia (Fig. 1b) and
hyperoxia (Fig. 1c) conditions yield larger fluorescence signals
for A549, being significantly larger in the latter case (Fig. 1d). On
the other hand, ratiometric 2NBDG fluorescence emission
measurements for cancer cells vs. PBMCs (Fig. 1e) clearly show
that hyperoxia conditions (300 μM concentration of 2NBDG,

Fig. 1 Effects of oxygen on human PBMCs spiked with a tumor cell line. Flow cytometry of PBMCs obtained from human blood from a healthy
donor sample spiked with A549 cells (1:100 ratio, cancer:healthy) as a function of the oxygen conditions. a normoxia; b hypoxia; and c
hyperoxia. d Average 2NBDG fluorescence emission per cell for the different oxygen conditions. e Ratiometric differences in 2NBDG
fluorescence emission for cancer cells (A549) and PBMCs (lymphocytes and monocytes) under the three oxygen conditions. FSC: forward-
scattered light
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30min incubation time) are the best suited to maximize the
fluorescence ratios (i.e., higher discrimination capabilities). It is
worth noting that longer incubation times and/or larger 2NBDG
concentrations are avoided as they promote apoptosis or
autophagy due to the depletion of growth factors (Figure S1).
The detection limits of the method were tested by analyzing

samples containing progressively diluted tumor cells spiked into
PBMCs suspensions, from 1:102 to 1:105 A549:PBMC cell ratios.
These suspensions were then incubated with 2NBDG, CD45-APC,
and CD14-PerCP/Cy5.5, under hyperoxia conditions. As in the
previous cases (Fig. 1a–c), the cytograms show four populations
composed by CTCs, lymphocytes, monocytes, and debris (Fig. 2a,
1:104 ratio). However, the representation of the 2NBDG fluores-
cence intensity vs. the forward scattering (Fig. 2b) reveals that, for
samples containing a small fraction of CTCs, the differentiation
between A549 and monocytes is no longer accomplished based
solely on the 2NBDG marker. This is likely because some of these
PBMC cells may consume large quantities of glucose, thus
generating false positives.23 Such issue is overcome by integrating
the CD45 signal as an additional discrimination parameter. In fact,
by representing the fluorescence intensity of 2NBDG against that
of CD45 (Fig. 2c), a panel is generated were the different
populations can be unambiguously classified into four different
quadrants: up-left (CD45+/2NBDG−), lymphocytes and mono-
cytes; up-right (CD45+/2NBDG+), activated monocytes; down-left
(CD45−/2NBDG−) debris; and down-right (CD45−/2NBDG+),
CTCs. Figure 2d shows the representation of the number of
A549 cells spiked into the PBMC sample vs. the number of
expected CTCs at different cell ratios, revealing a remarkable
degree of correlation (R2= 0.9841). Outstandingly, these data
show that, for all samples, cells with a positive 2NBDG response

and a lack of CD45 signal (i.e., CTCs) display a larger 2NBDG
fluorescence emission as compared to normal cells, which is
sufficient to detect single recognition events even at highly
diluted regimes.
Proof of concept clinical application of this method was

demonstrated by quantifying CTCs in real blood samples obtained
from different healthy donors (three) and selected lung cancer
patients (five). All patients were diagnosed with metastatic lung
cancer, but with different histology and disease distribution. Their
clinical characteristics at the time of the blood extraction are
summarized in Table 1, while Fig. 3a shows the correspondent
disease extension through CT and PET scans. Samples (8 mL) from
healthy donors and patients were treated through density
gradient (Ficoll) to extract the peripheral blood mononuclear
cells, and subsequently stained with CD45 and 2NBDG, before
running them into the flow cytometer. Figure 4 shows the results
obtained as a function of the fluorescence intensities of 2NBDG vs.
CD45. As in the case of spiked samples, positive CTC recognition
events were defined for a CD45−/2NBDG+ response. As expected,
healthy donors show no evidence of CTCs while patients display,
for all the cases, a variable number of tumor cells. These data
correlate well with those obtained with conventional diagnosis at
the time of sample extraction (Tables 1 and 1S, and Fig. 3a). First,
patients at partial response (CP1) or complete remission (CP5)
exhibit a very low number of CTCs (20 and 10 CTCs per 107 PBMCs,
respectively). Conversely, those patients with bulky disease (CP2
and CP3) show a considerably larger number of CTCs (160 and 120
CTCs per 107 PBMCs, respectively). Notably, for CP4 some
disagreement appears between the PET scan (Fig. 3a) and its
high SUV, and the low number of CTCs (10 CTCs per 107 PBMCs).
However, CP4 represents a clear example of the paradoxical

Fig. 2 Gating strategy and correlation between detected and expected CTCs in human PBMCs. Flow cytometry distribution of cells PBMC
sample obtained from human blood from a healthy donor sample spiked with A549 cells (1:104 ratio, cancer:healthy) as a function of the a.
cell complexity and size; b 2NBDG fluorescence emission and size; and c 2NBDG and CD45 fluorescence emissions. d Correlation between
detected and expected A549 cells per million of cells for different cancer:healthy cells ratios (1:102, 1:103, 1:104, 1:105, and 1:106). SSC: side-
scattered light
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radiological response of some patients when treated with
immunological drugs (i.e., pseudoprogression). In these cases,
although, the patient’s clinical situation may appear as a
progression of the disease, in reality, the tumor is in remission
as clearly demonstrated by CT monitoring over the time after
several treatment cycles (Fig. 3b).24

Interestingly, the cytometric panels in Fig. 4 reveal different
patterns of PBMC population distribution between healthy donors
and cancer patients, which can be clearly discerned even by the
naked eye. For instance, it is evident that the PBMC population
presents a more compact distribution in patients as compared to
healthy donors. To check the potential information hidden in
these patterns, several statistical, and probabilistic data analysis
methods were applied. As a first approach, all raw data, including

debris, PBMCs, and CTCs (Fig. 5a), were profiled by using kernel
density estimates of their distribution (Fig. 5b).25 In these
distributions, healthy individuals show two cell populations
(corresponding to the two peaks of the distribution) as compared
to the single, broader cell cluster exhibited by cancer patients.
Motivated by the observation of distinct cell populations,
especially in the case of healthy individuals, Gaussian mixtures
were used to model each distribution (Fig. 5c).25 These models
uncover several characteristic fingerprints. First, all healthy donors
present a cell population at high-CD45 intensities (over 1000).
Second, two other populations are clustered at intensities in the
10–100 range for both 2NBDG and CD45. In contrast, the high-
CD45 intensity population is absent for all patients, while the
single collection at lower CD45 intensity shown in Fig. 5b results in

Table 1. Clinical characteristics and tumor extension at the time of blood extraction

Anatomopathological diagnostic UICC stage PET SUV Primary tumor Metastasis localization CTCs/107 PBMCs

CP1 Adenocarcinoma IV 7.44 Multi-metastatica

Non-bulky
Lung
Mediastinal
Subcutaneous
Skin

20

CP2 Small-cell lung cancer IV 15.5 Pauci-metastaticb

Bulky
Mediastinal
Lung

160

CP3 Undifferentiated CA IV 6.23 Pauci-metastatic
Bulky

Mediastinal
Lung

120

CP4 Epidermoid CA IV 19.8 Pauci-metastatic
Bulky (false)

Mediastinal
Lung
Adrenal

10

CP5 Adenocarcinoma IV 6.41 Pauci-metastatic
Non-bulky

Mediastinal
Lung

10

UICC Union for International Cancer Control, SUV standardized uptake value, CTC circulating tumor cell, PBMC peripheral blood mononuclear cell, CA carcinoma
aMulti-metastatic, more than three metastatic localizations
bPauci-metastatic, three or lower metastatic localizations

Fig. 3 Computed tomography Positron emission tomography scanners. a Cross-sectional CT and PET-CT scans corresponding to the
maximum size of the primary tumor from five patients. All patients are in stage IV (metastatic) but with different extensions and size of the
primary tumor. CP1, adenocarcinoma patient with a non-bulky primary tumor, but with a very wide metastatic extension (subcutaneous); CP2
and CP3, CA patients with large primary tumors (bulky) but with limited extensions of metastasis; CP4, a priori, patient with a large primary
tumor (bulky) with limited extension of metastasis (b); CP5, patient with a non-bulky primary tumor with limited extension of metastasis. b CT
scan cross-sections showing the tumor progression of CP4 with treatment
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three subgroups that are characteristic of the patient diagnostic/
prognostic. Notably, according to these graphs, the cancer
patients can be subcategorized in three different groups: CP1,
CP2-3, and CP4-5. Independently, the distributions of the raw data
were compared by using the two-dimensional Kolmogórov-
Smirnov (KS) statistic26,27 to acquire an unsupervised clustering
of individuals (Fig. 6). In particular, the distance between pairs of
distributions was computed. Then, hierarchical clustering was
applied to group the individuals. Again, healthy individuals are
clearly separated from patients, while patients are classified in the
same three subgroups as before: CP1, CP2-3, and CP4-5.
Notably, this categorization in three subgroups only partially

agrees with that arising from CTC quantification (i.e., CP1, CP4-5:
low-CTC content, vs. CP2-3: high-CTC content; Table 1). Notwith-
standing, these different interpretations of the cytograms may
reveal two complementary dimensions of the disease. The first
one, CTC enumeration, takes account of the disease burden of the
primary tumor, while the other, the analysis of the cell population
pattern, appears to correlate well with the disease extension. This
latter observation is clearly corroborated by the results of the CT
and PET scan images and the volume of the primary tumor (Fig.
3a). In this regard, by applying conventional radiological criteria,
the disease can be defined as multi-metastatic (extensive) or
pauci-metastatic (limited), while the volume of the primary tumor

can be differentiated as bulky or non-bulky. Following these
conventionalisms, CP1 presents a more extended disease (multi-
metastatic, lung, mediastinal, subcutaneous, and skin) with no
dominant localization, not even in the primary tumor (non-bulky).
The rest of the patients (CP2-5), however, display a limited disease
(pauci-metastatic), but with different volumes in the primary
tumor, bulky for CP2-3 (active disease) and non-bulky for CP5 (in
remission). In the case of CP4, again, the monitoring of the disease
with imaging techniques (Fig. 3b) revealed that the initial bulky
disease shown in the CT and PET scans (Fig. 3a) was paradoxical,
which could be ascribed to the immunotherapy (the clinical
evolution showed that a considerable part of the supposed tumor
mass was due inflammation and infection, Fig. 3b).

DISCUSSION
Early and accurate diagnosis of lung metastasis is a pressing
clinical need. Lung cancer is prevalent and, in many cases, difficult
to detect or to stage with accuracy by conventional imaging.
Failing to accurately establish the existing stage of the disease
severely impacts the quality of diagnosis, as the actual threshold
guides the therapeutic strategy from potentially curative to
palliative. Important limitations of the imaging techniques, such
as at determining the presence of lymph nodes and mediastinal

Fig. 4 Flow cytometry data of samples of healthy donors and patients. a Healthy donors and b Lung cancer patients, as a function of 2NBDG
and CD45 fluorescence emissions. c Number of CTCs per 107 PBMCs
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metastasis or discriminating real tumor from reactive processes,
makes the development of new diagnostic biomarkers necessary.
This could also be useful to evaluate the responses to treatment
and, once validated, even be helpful for early diagnosis.

To date, the main goal of conventional LBs is identifying the
relationship between the number of CTCs and the patient
prognostics by either measuring progression-free survival (PFS)
or overall survival (OS).28 In this way, it had been possible to
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determine thresholds for the CTC content from which prognostics
is clearly differentiated (at least for colon, breast and prostate
cancer).16 Conversely, the correlation between the clinically
defined tumor burden and extension, and the number of CTCs
has never been established. Further, available LBs29 intrinsically
underestimate the number of CTCs in blood due to their antigen-
based approach, which limits the count of positive events to the
sole recognition of cells with epithelial receptors in their
membrane (i.e., EpCAM),22 while mesenchymal, tumor stem cells
or fluctuating phenotypic CTCs30,31 are completely disregarded.
This represents a major issue. For example, a recent study
conducted in patients with lung cancer undergoing radical
surgery (early stages) showed that the highest preoperative
clinical staging was related to the increased presence of
mesenchymal CTCs, but not with epithelial cells.32 In addition, a
comparative enumeration of CTCs of the same sample obtained
by using EpCAM with CellSearch® (the only FDA approved LB) and
cytometry showed that the former technique only accounts for a
third of CTCs events yielded by cytometry.33 Thus, to date, it is
unknown whether the prognostic value revealed by these CTC
quantification studies reflects the radiologic volume/stage of the
disease or is correlated with other biological characteristics, such
as those associated with aggressiveness, invasiveness, or the type
of CTC detected.34,35

Here we have developed a metabolic approach to the liquid
biopsy that can sensitively, specifically, and safely detect the

presence of CTCs in model patients with lung cancer at stage IV.
This metabolic liquid biopsy (MLB) radically redefines the sensing
strategy, profiting from the different consumption of glucose by
tumor cells as compared with healthy ones (Warburg effect).23

With this approach, two complementary layers of information are
provided. First, by using a metabolic feature universally shared by
all tumor cells,36 MLB has the capability of discriminating and
quantifying all CTCs (mesenchymal and epithelial), rather than
only the epithelial subgroup as for conventional phenotypical LBs.
Second, as MLB also labels all PMBCs, it is possible to extract
metabolic patterns using appropriate statistical and probabilistic
analysis which informs about the impact of the CTC presence on
the rest of the non-cancer cells. Thus, by applying two
independent statistical approaches to the cytometric data,
another dimension of the disease is profiled by revealing a new
class of adaptive metabolic pattern biomarker (AMPB), which
describes the extension of the disease as a function of the number
of metastasis. Within our cohort, we selected patients with lung
cancer at the same disease stage but with different disease
distribution (defined radiologically with CT and PET scans). The
selection was made based on (i) the presence or not of a bulky
tumor (massive primary tumor), and (ii) the extent of the
metastasis. This last feature was defined as the presence of more
or <3 metastatic sites (multi- vs. pauci-metastatic disease) that
would correspond to the stages M1a/M1b. Based on the CTC
enumeration, patients were discriminated into those with high

Fig. 5 a Uncategorized, kernel density, and Gaussian mixture models of the flow cytometry row data. Uncategorized flow cytometry raw data,
as a function of 2NBDG and CD45 fluorescence emissions; b kernel density estimate of the distribution and c Gaussian mixture models, of
PBMC samples obtained from healthy donors (HD) and lung cancer patients (CP)
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(CP2-3) and low (CP1, CP4-5) load of tumor cells. Subsequently, the
AMPB extracted from MLB clearly defined, for patients at the same
clinical stage, the presence or absence of a primary tumor mass
(bulky); a condition which is mostly related to the overall number
of CTCs. It is worth reminding that CP4 is the patient who
presented a paradoxical response in the PET because of
immunotherapy and inflammation.
While described for diagnosis and stratification in patients with

radiologically stage IV lung cancer, we believe that this MLB
approach may be also amenable to the detection of true stages IV
when the radiological diagnosis inaccurately establishes a stage I
or II (30–40% of relapses after radical surgery). In these situations,
unnecessary surgery could be avoided. On the other hand, in
stages III, where a very heterogeneous prognosis occurs (from 13
to 36% of 5-years survival rate), MLB would allow rescuing those
patients susceptible of curative surgery. Joining a list of recent
next-generation diagnostics (circulating tumor cell assays, bio-
marker monitoring), MLB-coupled to big data analysis (adaptive
metabolic pattern biomarker, AMPB) aims to build toward early
identification, prognosis, and staging of metastatic disease that
may result in improved patient outcomes and decreased

treatment toxicities. With a growing population of patients at risk
of developing lung metastasis, a highly sensitive, non-surgical,
nonradioactive method for repeated monitoring may be clinically
useful. Although these preliminary data show solid evidence on
the effectiveness of the method with the minimum human cost
validation of our findings with prospective clinical trials testing
therapeutic strategies based on MLB assessment will be required
to establish clinical utility.

METHODS
Study design and patients
Patients and healthy adult blood donors were recruited through the Grupo
HM Hospitales. Personal and clinical data were recorded according to
standard clinical procedures. All samples were collected with written
informed consent and institutional review board (Ethics and Clinical
Research Committee of the Grupo HM Hospitales. Madrid, Spain; www.
hmhospitales.com) approval in accordance with the Declaration of
Helsinki. The set of patients selected for this study was identified from
patients diagnosed and treated for stage IV of lung cancer. Five of them
were recruited with the primary goal of analyzing the association of the
number of CTCs and the metabolic distribution of PBMCs with the

Fig. 6 Two-dimensional KS statistic and unsupervised hierarchical clustering of healthy donors and cancer patients. From the distribution of
the raw data, distances between all pairs of samples were calculated using the two-dimensional KS statistic.26 Then individuals where grouped
using hierarchical clustering
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diagnostic of lung cancer. Eligible patients included in this study were age
≥18 years with treated primary lung cancers at stage IV with either non-
small cell lung cancer (NSCLC) (adenocarcinoma and squamous cell
carcinoma) or small-cell lung cancer (SCLC) histology and receiving
treatment with chemotherapy or immunotherapy. Eligible patients under-
went pretreatment imaging by chest CT and whole-body PET-CT. All
patients underwent pretreatment brain MRI. Patients were chosen based
on the volume of their primary tumor, considering two categories: (i)
tumor size (bulky, >4 cm, and non-bulky, <4 cm); and (ii) metastasis
extension (extended or multi-metastatic, >3 M1a/M1b, and not-extended
or pauci-metastatic, <3 M1b).

EXPERIMENTAL
Cell culture
A549 lung cancer cells were obtained from the American Tissue
Culture Collection (ATCC, Manassas, VA, USA) and cultured in RPMI
1640 media supplemented with 10% fetal bovine serum. Cells
were maintained at 37 °C in a humidified 5% CO2 atmosphere.

Clinical samples
Personal and clinical data were recorded according to standard
clinical procedures. All specimens were obtained with informed
consent. The study was approved by the local Ethics and Clinical
Research Committee. A volume of 8 mL of blood was drawn in
10mL vacutainer tubes containing ethylenediaminetetraacetic
acid (EDTA) and processed in the first 24 h. Results for CTCs were
linked to clinical data.

Preparation of samples
Blood samples from cancer and healthy patients were obtained
from the Servicio de Oncología of the HM Hospital Universitario
Torrelodones-Madrid. Peripheral blood mononuclear cells (PBMCs)
were isolated from the whole blood using Ficoll-Paque PLUS
(purchased from GE Healthcare Life Science). A volume of 15 mL of
Ficoll solution was added to a 50mL Leucosep centrifuge tubes
(Greiner Bio One) and blood was disposed as a layer onto Ficoll.
Samples were centrifuged at 800 g for 15min at 18 °C, and the
resulting PBMC layer was separated from the rest of phases.
PMBCs were washed twice in 10 mL phosphate buffered saline
(PBS) by centrifugation at 250×g for 10 min and finally suspended
in RPMI 1640 supplemented with 10% FBS, until use. Hypoxia and
hyperoxia conditions were achieved by placing a PBS solution of
2NBDG in a closed tube (15 mL sterile disposable centrifuge tube,
Fisherbrand) inside modular incubator chambers (Billups-Rothen-
berg, Inc). Air-tight chambers were connected to a nitrogen gas
line to replace all oxygen content (hypoxia conditions) or
connected to an oxygen line to provide an extra amount of
oxygen saturation (hyperoxia conditions) during 20min. Levels of
oxygen saturation were measured to determine the quantity of
oxygen in the system even after 1 h.

Cell line uptake studies
A certain amount of A549 (ATCC® CCL185™), or MCF7 (ATCC® HTB-
22™), cancer cells were spiked into collected PBMCs from healthy
donors. Cells were pelleted and placed in 100 µL PBS supple-
mented with 10% FBS. A volume of 4 µL anti-CD45-APC (for
leukocytes staining) or anti-CD14-PerCP/Cy5.5 (for monocytes),
were added. Additionally, 100 µL of 2NBDG at different concen-
trations was added: 50 µM, 300 µM, and 600 µM; in time, 10 min,
30min and 60min. Afterwards, cells were washed twice by
centrifugation at 250×g for 10min and suspended in cold PBS.
The same procedure was followed to study the oxygen availability
(normoxia, hyperoxia, or hypoxia) effect on the uptake of 2NBDG
by cells, choosing 300 µM 2NBDG and 30min as optimal
conditions. Moreover, different amounts of A549 cancer cells
were selected and spiked into the blood: 10,000; 1000; 100 and 10

cells for 1 × 106 PBMCs. The same amounts of stains were added
and 300 µM and 30min of time under hypoxia conditions were
used for the 2NBDG incubation.

Healthy and cancer patient blood uptake studies
PBMCs from cancer patients enrolled in the study were directly
pelleted and placed in 100 µL PBS supplemented with 10% FBS. A
volume of 100 µL of 2NBDG of 300 µM and 4 µL of anti-CD45-APC
(for leukocyte staining), were added for 30 min, under hyperoxia
at room temperature (RT). Afterwards, cells were washed
twice by centrifugation at 250×g for 10 min and suspended in
cold PBS.

Sample measurements with flow-cytometry
Flow cytometry of the samples was carried out in a NovoCyte Flow
Cytometer (from AceaBiosciences), equipped with 488 nm and
640 nm excitation lasers and 530/30 nm and 675/30 nm detection
filters. The 488 nm blue laser and 530/30 nm filter were used for
the excitation and collection of 2NBDG staining, The 675/30 nm
filter was used to collect fluorescence from PerCP/Cy5.5 excited
with the same laser. The 640 nm red laser and 675/30 nm filter
were used for excitation and emission collection from APC dye.
Cytometry data were analyzed with NovoExpress and FloJo VX
software and Microsoft Excel.

Statistical analysis and probabilistic modeling
The kernel density estimates and the Gaussian mixture models
were obtained using the Scikit-learn Python module.25 The
Gaussian mixture models were fitted (including full covariances)
using variational inference with a fixed number of components (n
= 3) and Dirichlet priors. All other parameters and hyperpara-
meters were set to their default values in Scikit-learn. The two-
dimensional KS statistic was calculated using our own implemen-
tation of the algorithm described in ref.26 based on the
implementation in ref.27 Because calculation of the two-
dimensional KS statistic is computationally demanding, we used
50% of each dataset for all pairwise comparisons.

Data availability
The authors declare that the data supporting our findings are
included in the paper. Raw data are available upon reasonable
request to the authors.
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