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Complex networked systems often exhibit higher-order interactions, beyond dyadic
interactions, which can dramatically alter their observed behavior. Consequently,
understanding hypergraphs from a structural perspective has become increasingly
important. Statistical, group-based inference approaches are well suited for unveiling
the underlying community structure and predicting unobserved interactions. However,
these approaches often rely on two key assumptions: that the same groups can explain
hyperedges of any order and that interactions are assortative, meaning that edges
are formed by nodes with the same group memberships. To test these assumptions,
we propose a group-based generative model for hypergraphs that does not impose
an assortative mechanism to explain observed higher-order interactions, unlike current
approaches. Our model allows us to explore the validity of the assumptions. Our results
indicate that the first assumption appears to hold true for real networks. However, the
second assumption is not necessarily accurate; we find that a combination of general
statistical mechanisms can explain observed hyperedges. Finally, with our approach,
we are also able to determine the importance of lower and high-order interactions
for predicting unobserved interactions. Our research challenges the conventional
assumptions of group-based inference methodologies and broadens our understanding
of the underlying structure of hypergraphs.

complex networks | higher-order interactions | stochastic block models | probabilistic inference |
link prediction

In a networked system, interactions are often represented as relationships between pairs
of units within the system. However, this representation is in many cases inaccurate and
fails to fully represent the complexity of the interactions. In fact, units in the system
often participate in so-called higher-order or polyadic interactions that involve more
than two units. This is the case of, for instance, collaboration networks in which a team
of researchers coauthor papers together, groups of enzymes that form protein complexes
to perform a function within the cell, or substances combined into drugs approved
for medical use (1, 2). The fact that higher-order interactions are commonplace in
natural networked systems makes us question how to reassess previous findings on
dyadic networks. For example, higher-order interactions have been suggested to be at the
root of the high heterogeneity observed in the density of many real-world networks (3).
Moreover, recent studies also show that considering higher-order interactions can have
quite dramatic effects in dynamical processes occurring on networks such as the spread
of epidemics and misinformation, or synchronization (4–7).

Over the last decade, network scientists have been very successful at developing a
set of inference methodologies with which to model the large-scale organization of
complex networks (the so-called community detection problem) (8); these methodologies
have been proven useful to predict unobserved interactions and detect errors (9–11)
and for network reconstruction (9, 12, 13). However, the focus so far has been on
dyadic interactions, and only recently the corresponding inference framework has started
to emerge for higher-order interactions. In particular, recent works have looked into
how inference can help reconstruct higher-order networks based on the heterogeneities
observed in dyadic networks (13); how to obtain communities of nodes using generative
models for higher-order interactions (14–16); and how inference models can help in the
recovery of unobserved hyperedges (17). Importantly, current approaches focus on the
limit of almost complete knowledge of the hypergraph, an assumption that is not valid
in empirical biological sciences in which experiments are costly and therefore a small
percentage of interactions can actually be assessed (18, 19).

Here, we want to further investigate the problem of predicting unobserved interactions,
a problem that is closely related to the problem of network reconstruction when we have
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a partial observation of a network with higher-order interactions
(9, 12). Understanding how inference approaches can help in
prediction tasks is a necessary step toward gaining confidence
about the validity of the assumptions behind group-based
generative models that we can use for clustering and hyperedge
prediction (such as in refs. 14, 15, 17, and 20) and also to
understand the limitations of these models (21).

We address the problem of predicting unobserved interactions
between tuples of m nodes (m-hyperedges) given a set of observed
m-hyperedges and assess up to which point observed interactions
between tuples of n(6= m) nodes are useful to predict m-
hyperedges. Specifically, as it is commonplace (14, 15), we assume
that there is an underlying group structure that explains observed
hyperedges; our focus is then to predict interactions between
tuples of nodes of fixed size m by considering extra information
that might be useful in the predictive task (that is, interactions
between tuples of a different size n) in a similar way to when we
include node attributes in the inference process (22, 23). To this
end, we introduce a mixed-membership stochastic block model
for hypergraphs and its corresponding inference equations. This
simple model allows us to explore in a straightforward manner
the extent up to which hyperedges of different sizes inform one
another and help make predictions of unobserved data, and in
turn, whether a unique set of group memberships can be used to
explain hyperedges of any size.

We find that only in the cases in which interactions have been
generated with similar underlying group structures, hyperedges
of size m are informative about the existence of unobserved
hyperedges of size n, and that this seems to be the case for real data
as well. Remarkably, lower-order interactions typically carry more
information than higher-order interactions, which highlights
the importance of reliably measuring low-order interactions for
properly reconstructing hyperedges involving a large number of
nodes. Additionally, because our model does not assume group
assortativity in the interactions, we can also explore what types of
patterns better explain the interactions we observe. Our results
for real data show that a group-assortative mechanism is not the
only pattern of interaction that explains hyperedges.

Mixed-Membership Stochastic Block Models
for Higher-Order Interactions
We start by considering a Bernoulli mixed-membership stochas-
tic block model (SBM) (24, 25) for unipartite, undirected
networks with binary interactions between pairs of nodes. Each
element in the dyadic adjacency matrixA(2) can take two possible
values A(2)

ij ∈ {0, 1}. Here and in what follows, the superindex
of the adjacency matrix indicates the size of the hyperedges we
consider.

A mixed-membership SBM assumes that there are K underly-
ing groups of nodes, and that each node i has probability �i� of
belonging to node group � = 1, . . . , K with

∑
� �i� = 1. The

SBM further assumes that edges are conditionally independent
and that there is a matrix q(2) that expresses the probability
that pairs of nodes interact given their group memberships. The
probability that A(2)

ij = 1 is then expressed as

p
(
A(2)
ij = 1|�, q(2)

)
=
∑
�,�

�i� �j� q
(2)
�� , [1]

where q(2)
�� is the probability that a node that belongs to

group � interacts with a node that belongs to group �, and

p(A(2)
ij = 0|�, q(2)) = 1 − p(A(2)

ij = 1|�, q(2)). Note that if
the order of the nodes matters (such as in directed networks),
then we would consider tuples instead of sets of nodes. In order
to generalize our model for tuples, one would have to consider
different group membership vectors depending on the position
of the node in the tuple. For instance, for tuples of size two
(or directed edges), this would be equivalent to having different
membership vectors for incoming and outgoing edges.

If we have higher-order interactions such as those involving sets
of three nodes (3-node interactions), then we can make the exact
same assumptions, namely, that there are K underlying groups
for nodes, and that the probability that node i participates in
group � is �i� . We can then use a tensorial SBM (11, 26) to
express the probability that nodes (i, j, k) interact (that is, that
A(3)
ijk = 1) as

p
(
A(3)
ijk = 1|�, q(3)

)
=
∑
�,�,

�i� �j� �k q
(3)
�� , [2]

where q(3)
�� is the probability that three nodes that belong to

groups �, � and  , respectively, interact. As before, p(A(3)
ijk =

0|�, q(3)) = 1− p(A(3)
ijk = 1|�, q(3)).

Note that, using this approach, it is straightforward to model
hyperedges of any size, so that for interactions involving sets of
n nodes (A(n)

i1...in ), we would have to consider an n-dimensional

connection probability tensor q(n)
�1...�n (Fig. 1).

In the same spirit as other generative models for hypergraph
and tensorial models (11, 14, 15, 26), our model assumes that the
probability that a set of nodes interact depends only on the group
memberships of the nodes. Because in an SBM the probabilities
that hyperedges of size n exist are conditionally independent once
� and q(n) are fixed, the likelihood of all observed hyperedges
of size n,

(
A0)(n), is the product of probabilities for each of the

observed interactions

L
((
AO)(n)

|�, q(n)
)

=
∏

(i1...in)∈(AO)(n)

p
((
AO
)(n)
ij |�, q

(n)
)
.

[3]

Importantly, this approach allows us to model simultaneously
hyperedges of different sizes considering group-based mecha-
nisms that can vary for every hyperedge size. For instance, we
could have an assortative mechanism for 2-node interactions
and a disassortative mechanism for 3-node interactions. If we
assume that the underlying K groups of nodes can explain the
observed hyperedges of any size, the likelihood of the observed
interactions AO := {

(
AO)(2) , . . . ,

(
AO)(n)

} given the model
parameters {�, q(2), . . . , q(n)

} ≡ {�, q} is then the product of
the likelihoods of the observed set of hyperedges of all sizes is

L
(
AO
|�, q

)
=
∏
n
L
((
A0)(n)

|�, q(n)
)
, [4]

where the product is over all observed hyperedge sizes.
If we assume flat priors over model parameters, then the

log-posterior probability of model parameters {�, q} given the
observed data is (up to a normalizing constant)

log P({�, q}|AO) =
∑
n

log L
((
A0)(n)

|�, q(n)
)
, [5]
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A

B

C

Fig. 1. A mixed-membership stochastic block model (SBM) for higher-order interactions. Given N nodes, we have hyperedges involving a different number
of nodes. (A) Hyperedges (black circles) involving pairs, triplets, and quadruplets of nodes (blue circles) (B) In a mixed-membership SBM for hypergraphs, the
probability of observing each n-hyperedge (or n-node interaction) depends on: i) the group memberships vectors of the nodes � illustrated for K = 3; and ii)
a n-tensor q(n) of connection probabilities. Each tensor element q(n)�1 ...�n describes the probability that n nodes that belong to groups {�1 . . . �n} interact. We
assume that the group memberships of nodes are the same for the different interaction orders, which allows to use observed hyperedge of one type to predict
hyperedges of another type. (C) Membership vectors and tensors for K = 3 node groups.

which is amenable to using an expectation-maximization algo-
rithm to find local maxima of the posterior landscape. We can
then average over maxima in the posterior landscape to make
predictions, as shown in refs. 11, 22, and 25 (see Data and
Methods for details).

Limitations for Large Hyperedge Sizes. For a fixed number of
groups K , the number of elements in the connection probability
tensor grows with hyperedge size n as K n. This poses a problem
to the usability of our approach, since even for small values
of K and n, it would not be possible to estimate reliably all
tensor elements given finite observed data. However, the majority
of hypergraph data are not directed, which means that tensors
must be symmetric under index permutations (for instance for
hyperedges of size n = 2 we have that: q(2)

ij = q(2)
ji ). This limits

the number of unique tensor elements, which for large n become a
vanishingly small fraction of the total number of tensor elements.
For instance, for K = 6, the number of unique tensor elements
for hyperedge size n = 7 is 270,036, but the number of unique
index combinations is 720 (0.26%). The limitation for very large
hyperedge sizes still stands, but for practical analyses in which
hyperedges of large sizes are a vanishingly small fraction of the
hyperedge space, our approach can still be used on the majority of

the data with a substantial advantage over assortative approaches
as our analysis for real data shows.

Related Work
Hypergraph Stochastic Block Models for Clustering and Com-
munity Detection. There is some literature addressing the prob-
lem of community detection in hypergraphs (see for instance ref.
2). Most relevant here are works that use hypergraph stochastic
block models (HSMB) to obtain communities or clusters of
nodes in hypergraphs (14, 15, 20, 27–29). These approaches
consider that nodes can belong to only one group of nodes.
Additionally, they focus on situations in which we have block-
diagonal SBMs, that is, on models in which the underlying
block structure is assortative (or, if we exchange edges and
nonedges, fully disassortative), so that it is more probable to
have hyperedges among nodes in the same group. Recent work
shows that assortativity can be formalised in different manners in
HSBMs, resulting in different groupings of nodes (15).

By contrast, in our mixed-membership approach, nodes have
a finite probability of belonging to each one of the groups, which
makes the model more expressive. Additionally, our model can
account for different group mechanisms generating hyperedges
of different sizes, as ref. 16 shows for the case of weighted
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hypergraphs. This means we do not impose specific constraints
on the probability tensor entries, and therefore we do not need
to assume full-assortativity (or full disassortativity). Therefore,
our formulation could capture situations in which it is not
necessary for nodes to belong to the same groups (or have similar
membership vector profiles) to interact, or situations in which this
happens for some types of hyperedges but not others. Arguably,
the approach used in ref. 15 allows, with a smaller number of
parameters, to model hypergraphs with interactions of any size.
However, for hypergraphs with a large number of interactions
of smaller size, a more flexible approach like the one we propose
could provide a better description of the data.

Finally, we note that, while in terms of model selection single
group memberships are easier to interpret, our goal here is to make
predictions of unobserved data, which requires averaging over
models (9, 10). Previous work shows that mixed-membership
models are, in general, more expressive than single-membership
ones and make better predictions of unobserved edges (25).

Prediction of Higher-Order Interactions. Approaches to hyper-
edge prediction can be divided in roughly two classes: structural
and mechanistic approaches. Structural approaches use topolog-
ical information to establish how likely it is that an unobserved
hyperedge exists in the hypergraph. Local structural approaches
assume that there is an underlying assortative mechanism that
explains hyperedge formation. Then, these approaches use the
topology of the hypergraph to establish similarities between
nodes and use this similarity to estimate the probability that
a set of nodes participate in the same hyperedge. To make
predictions of unobserved hyperedges, these approaches use
methods that range from adapted common neighbors or Katz
centrality metrics to assess similarity between nodes (29), to more
sophisticated metrics such as resource allocation (30), or even
consider a wide array of topological features of hyperedges to train
a binary classifier (31). Global structural approaches focus on
overall properties of the adjacency tensor to predict unobserved
hyperedges; these approaches include matrix factorization-based
inferential approaches (29) and spectral approaches (32). Finally,
very recent work uses an inferential approach based on a Poisson
formulation of stochastic block models to predict hyperedges of
any size (17).

Mechanistic approaches focus on the creation of higher-order
hyperedges (or depending on the work, simplices or motifs) from
lower-order hyperedges assuming specific closure mechanisms
(33, 34). These approaches are better suited, in general, to
describe the time evolution of a hypergraph. However, they are
not ideal when we have a single, incomplete observation of a
hypergraph that we want to reconstruct, because the proposed
mechanisms have a temporal dimension.

Structural approaches are, in general, better suited for this task
as the goal is to find the topological or statistical regularities that
help predict unobserved interactions. Nonetheless, it remains
to be explored whether regularities are also useful to make
predictions of the future evolution of networks as in the case
of dyadic interactions (35–38).

Our approach is a structural global approach in which we use
an inference approach to uncover the statistical regularities of
the whole adjacency tensor. Therefore, it is more closely related
to the tensor-factorization inferential approach presented in ref.
29, and to the inferential approach in ref. 17. Indeed, the latter
also considers a mixed membership approach albeit in a Poisson
formulation which is better suited the weighted graphs they
study as in ref. 16; however, in contrast to ours, the tensor that

determines connection rates between groups is considered to be
diagonal, that is, it assumes an assortative mechanism as in ref.
15 or, in terms of mixed-membership models, follows a matrix-
factorization-like approach as in ref. 29.

In the context of recommendation systems, we have shown
that mixed-membership SBMs formally are more general models
than those implicit in matrix factorization; in mixed-membership
SBMs, nodes with similar latent representation are not forced to
be connected and, conversely, dissimilar nodes can be connected
(25). As a result, mixed-membership SBMs are more flexible to
explore different patterns of interaction and more predictive in a
number of contexts (25, 39).

Our primary focus here is on showing up to what extent lower-
order interactions are informative of higher-order interactions
and vice versa, and to which extent standard assumptions in
the modeling of higher-order networks are valid. In doing
so, however, we are also able to show that because of its
expressibility, and despite its scalability limitations for very large
hyperedge sizes, our approach outperforms assortative approaches
for hyperedge prediction when observations are limited.

Results
Synthetic Data. First, we want to assess how informative are n-
node interactions for the prediction of m-node interactions. To
that end, we generate synthetic hypergraphs with interactions
involving pairs and triplets of nodes. To generate these graphs,
we use a mixed-membership stochastic block model in which
the membership vectors of nodes are the same for all types of
interactions, as described above (see Materials and Methods for
details). We then look at the performance of our approach at
predicting unobserved hyperedges when we consider only one
type of interaction and when we consider both.

Fig. 2 shows that, as expected, as we increase the number
of observed interactions of the same type, the model makes
better predictions of unobserved hyperedges and reaches optimal
predictive power.*

We find differences between the impact that 2-node inter-
actions have in the prediction of 3-node interactions, and the
impact that 3-node interactions have in the prediction of 2-
node interactions. While adding 2/3-node interactions to small
training sets of 3/2-node interactions boosts predictive accuracy,
in this case, 2-node interactions carry more information and result
in a larger increase in predictive accuracy, due to the larger density
of positive interactions (Fig. 2 A and B). Our results show that,
for the task of predicting out-of-sample data, including any order
of interactions in the training set helps in the inference process
and to predict unobserved data and reconstruct the network.

We can look at this result from the perspective of an issue
that has raised a lot of interest recently, namely, assessing
the importance of additional information (for example, node
attributes or metadata) for elucidating the underlying community
structure of networks (23, 40) or for link prediction (22). In link
prediction, additional information can be detrimental if node
attributes are not correlated with observed network structure.
Here, we face a similar problem. In general, generative models
to predict higher-order interactions rely on the fact that the
same underlying groups of nodes and interaction mechanisms
are responsible for all the interactions we observe between nodes.
Indeed, this seems a reasonable assumption, but one could

*Note that in our synthetic hypergraphs, the average density for the model parameters
we use is of 50% and 30% for 2- and 3-node interactions, respectively. Therefore, neither
the optimal predictive performance for each prediction task nor the size of the training
set necessary to achieve it are the same in both predictive tasks.

4 of 10 https://doi.org/10.1073/pnas.2303887120 pnas.org
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A B

DC

Fig. 2. Effect of 3-node interactions in the prediction of 2-node interactions and vice-versa. (A and B) We generate synthetic hypergraphs using a mixed-
membership stochastic block model with K = 2 (see Text and Materials and Methods for details) with 2-node and 3-node interactions. Node membership
vectors are the same for 2-node and 3-node interactions. (A) We compare the performance at predicting unobserved 2-node interactions when we observe
only 2-node interactions, and when we observe 2-node interactions and additional 3-node interactions (250, 500). We use the AUC as a metric, that is, the
probability that if we pick a noninteraction and an interaction at random, the model is able to properly classify them. (B) We compare the performance at
predicting unobserved 3-node hyperedges when we observe only 3-node interactions, and when we observe additional 2-node interactions (250, 500). (C and
D) We generate synthetic hypergraphs with 2-node and 3-node interactions using a mixed-membership stochastic block model with K = 2 in which nodes can
have two possible membership vectors (see Materials and Methods for details). With probability f , we consider that a node has different group memberships
to generate 2-node and 3-node interactions, so that there is a fraction f of nodes with misaligned group memberships in the hypergraphs we generate. (C)
We show the AUC to compare the ability of the model of predicting unobserved 2-node interactions when we observe 500 2-node interactions and 500, 1,000,
2,000, and 4,000 3-node interactions with different fractions of nodes with misaligned group membership vectors. The gray line corresponds to the average
AUC obtained for 500 observations of 2-node interactions in the training set. The gray shaded area shows AUC values that are within a SD or lower than the
reference value. (D) Same as C, exchanging 2- and 3-node interactions. In all plots, each point corresponds to an average over 10 different hypergraphs and 10
different training-test set combinations. For each one of these, we perform 25 expectation maximization runs with K = 2 to make predictions (Materials and
Methods). Error bars correspond to the SE of the mean. The test size is always 1,000 2-node or 3-node hyperedges.

think of situations in which different group memberships or
mechanisms are responsible for different types of hyperedges.
For instance, if we investigate the effect of simultaneous gene
mutations on a specific phenotype, it could be that higher-order
effects are the result of the interaction of different pathways that
do not take place in a small number of genes. Because genes
can have an effect on multiple pathways it could well be that
the grouping that explains both kinds of interactions are not
necessarily the same. The question is, then, what is the effect
on the prediction of unobserved interactions (and therefore in
network reconstruction) of the assumption that a unique group
structure can explain all of the interactions among sets of n-nodes.

To address this question, we again generate synthetic networks
with 2-node and 3-node interactions using a mixed membership

stochastic block model (Materials and Methods). We then
consider the case in which, for a fraction of the nodes, group
memberships generating 2-body and 3-body interactions are
different, and therefore have misaligned memberships (Fig. 2 C
and D; Materials and Methods). We find that, when we observe
a small number of (2-body or 3-body) interactions, including
information of interactions generated by a different set of group
memberships decreases predictability in both cases (Fig. 2 C
and D). Indeed, even when the fraction of nodes with misaligned
memberships is as low as 20%, predictability falls even when only
a few 2-body/3-body interactions are observed. We also find that
the effect is not symmetric. In our synthetic data, with 500 2-node
observations, we get an accuracy that is close to the theoretical
maximum, so that the improvement introduced by considering
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3-node interactions is modest. Any misalignment in the 3-node
interactions is likely to erase that contribution and lower accuracy
(gray area in Fig. 2C ). By contrast, for the prediction of 3-node
interactions we see a larger difference between observing only 3-
node interactions or 3-node and 2-node interactions. Therefore,
more misinformation is necessary for the same negative effect
(larger fraction of misalignment or a larger number of observed
2-node interactions).

Summarizing, our approach allows one to leverage higher-
order interactions to predict lower-order interactions and vice-
versa. At the same time, it shows that if the mechanisms leading
to 2- and 3-node interactions are different, then mixing them can
have negative effects on link prediction. Therefore, by measuring
the effect of such combinations of 2- and 3-node interactions
in real data, it is possible to elucidate whether interactions of
different orders in a given network are likely to have been
generated with the same underlying group structure or not.

Real Data. To illustrate the use of our approach with real data
in the case in which the amount of observations is limited,
we consider two different datasets. First, we consider a drug
substance dataset collected in ref. 33, from which we use the
information about drugs that have at most five substances in
their composition (see Data for details). We represent drugs that

have n different substances in their composition as n-substance
interactions in the substance network.

Second, we consider a dataset on the effect of gene knockouts
on cell growth for the yeast Saccharomyces cerevisiae. In particular,
the dataset contains knockouts of 410,399 pairs and 91,111
triplets of genes (18) (see Data for details). From these data,
we represent double mutants that present significant alterations
of the expected growth as 2-gene (digenic) interactions (9,363
in total) and triple mutants that result in significantly negative
differential growth as 3-gene (trigenic) interactions (3,196 in
total; see Data and ref. 18 for details).

In Figs. 3 A and B and 4, we show that, in both cases, our
approach is able to make predictions for all hyperedge sizes we
investigate. Our results also show that 3-node interactions hold
relevant information that helps predict 2-node interactions and,
conversely, that 2-node interactions hold relevant information
that helps predict 3-node interactions. Thus, these results indicate
that for these two case studies, the underlying groups for both
types of hyperedge are the same, since otherwise we would expect
to see a decline in predictive performance, rather than an increase.
Results for higher-order interactions in Fig. 3 C and D confirm
this result and also confirm that our algorithm can also be applied
to predict larger-order interactions even when the number of
observed hyperedges is low.

A B

C D

Fig. 3. Prediction of the co-occurrence of substances in drugs. We represent each drug as a hyperedge that connects the substances within that drug. We
perform different prediction experiments to predict unobserved 2-substance (A), 3-substance (B), 4-substance (C), and 5-substance (D) drugs (see Materials
and Methods for data description). In each plot, we consider predictions when the training set comprises only one type of hyperedge, and by adding an equal
number of lower- or higher-order hyperedges to the training set as indicated by the legend in each plot (solid lines). The # of interactions in the training set
comprises the total number of hyperedges (0 and 1) that are observed. The rest of hyperedges are not observed and therefore are not taken into account
in the likelihood. Note that as we increase the training set size, the prediction ability increases. Including information of hyperedges of a different order also
increases accuracy. Discontinuous lines correspond to predictions using a mixed-membership Bernoulli model in which connection probability tensors are
diagonal. Lines are colored according to the legend in each panel. See Materials and Methods for details on how we make predictions. Results for our approach
are for K = 6; results for the assortative model are for K = 8 (see Materials and Methods for details). Error bars (some smaller than the symbols) show the
cross-validation SEM.
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A

B

Fig. 4. Prediction of gene interactions. (A) Prediction of interactions be-
tween pairs of genes. Out of the 410,399 digenic interactions available,
we perform cross-validation experiments in which we consider five test
sets with 20% of available interactions and training sets with a percentage
p ∈ [10%,80%] of the remaining 2-gene interactions. We show the AUC of the
held-out 2-gene interactions versus the number of 2-gene interactions in the
training set. We also show the AUC for the case in which we add trigenic
interactions to each training set (50% and 100% of the 91,111 available
trigenic interactions in the dataset). Note that for the same fraction of 2-
gene interactions in the training set, adding 3-gene interactions improves
prediction accuracy, especially, for small training set sizes. (B) Prediction of
interactions between triplets of genes. We perform the same experiments
as in A exchanging 2-gene and 3-gene interactions. We consider training sets
with a percentage p ∈ [10%,80%] of 3-gene interactions and additional 2-
gene interactions (between 20K and 160K). Note that for the same fraction of
2-gene interactions in the training set, adding 3-gene interactions improves
prediction accuracy, especially for small training set sizes. Discontinuous lines
correspond to predictions using a mixed-membership Bernoulli model in
which connection probability tensors are diagonal. Results for 2-gene and
2,3-gene interactions combined are for K = 6; results for 3-gene interactions
are for K = 2 (seeMaterials andMethods for details); results for the assortative
model are for K = 8. Error bars (some smaller than the symbols) show the
cross-validation SEM.

To further, understand the role of assortativity, we also com-
pare against the performance of a mixed-membership Bernoulli
SBM model in which we assume that connection probability
tensors q(n) have a diagonal structure.† In all the cases we
consider, the performance of the assortative model is clearly
inferior to our approach, which imposes no constraints on the
elements of the q(n) tensors. These results showcase the advantage
of using more expressible models.

Figs. 3 and 4 also highlight that the information that different
types of interactions carry is not symmetric when it comes
to making predictions. For the drug composition dataset, we
find that, similar to observations for synthetic data, having
information of 2-substance drugs is more informative to predict
whether 3 substances are present in the same drug or not than

†We also tried to use the approach in ref. 17 but it resulted in a lower performance
that our implementation of an assortative HMMSBM. The are two main reasons that can
explain this: i) because the Poisson model is a worse model for hypergraphs with binary
hyperedges; or ii) because the assumption that non observed hyperedges are zeroes in
the adjacency matrix is bad in the limit of sparse observations we consider.

the other way around. Again this is to be somehow expected
since the overall fraction of 2-substance drugs (out of possible
pairs) is larger than that of 3-substance drugs. In fact, our results
suggest that, overall, predicting 2-substance drugs is a harder
problem (consistent with what ref. 33 suggests). For higher-order
interactions, our results in Fig. 3 also show that, the higher the
order of the interaction, the more lower-order interactions needed
to make a difference for predicting unobserved hyperedges.

For interactions between genes, our results again show that 3-
gene interactions are useful to predict 2-gene interactions when
the number of observed 2-gene interactions is comparable to
the number of trigenic interactions in the training set. Instead,
digenic interactions are very helpful to improve the prediction
of trigenic interactions. Indeed, given the small size of the
trigenic dataset (0.3% of possible interactions with respect to
59% of possible digenic interactions), our analysis provides an
excellent example of how our approach can be leveraged to obtain
unobserved higher-order interactions.

An advantage of the expressiveness of our model is that
we can use model parameters to further explore the statistical
mechanisms that lead to good predictions. Fig. 5 shows q(2) and
q(3), the 2-node and 3-node connectivity matrices for the models
with the largest posterior we sample, for the drug composition
and gene interaction datasets. In both cases, we can see that
q(2) and q(3) matrices do not have an assortative, block-diagonal
structure. For 2-node and 3-node interactions, we see that there
are a few groups of nodes that have a tendency to interact with
nodes in other groups, which are reminiscent of core-periphery
interactions. At the same time, we also find that in some cases,
pairs of groups with nonzero connection probability are also
involved in three-group interactions, which is compatible with a
certain degree of assortativity. However, 3-node interactions in
both cases have richer patterns of connection than 2-node interac-
tions, showing that while 2-node interactions are informative, we
need specific 3-node interaction mechanisms different from the
2-node interaction mechanisms. Note also that, while 3-gene and
2-gene interactions have different patterns of interaction, they are
related, and 3-gene patterns of interactions are only discernible
once we include 2-gene and 3-gene interactions in the training
of the model (Fig. 6), thus again highlighting the importance of
lower-order interactions to properly model higher-order ones.

Furthermore, our results also capture interaction patterns that
would not be compatible with a simplicial closure mechanism
(33); in the two cases we analyze, we find in q(3) nonzero
probability of interaction between groups for which q(2) is close
to zero, which means that for a 3-node hyperedge to exist, a
lower-order interaction between all the pairs of nodes is not
necessary. Our analysis thus shows that our approach is useful to
understand statistical patterns behind higher-order interactions
that go beyond assortative mechanisms and also beyond simplicial
closure.

Discussion and Conclusions
Our manuscript shows how we can use inferential approaches
based on mixed-membership stochastic block models to predict
unobserved interactions in hypergraphs. The flexibility of our
model allows us to investigate a number of fundamental questions
about higher-order interactions.

First, our approach enables us to assess the role that observed
hyperedges of different order play in the prediction of unobserved
hyperedges. In particular, we have shown that we can leverage the
information available about hyperedges of a given order to make
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A B C D

Fig. 5. Connextion probability tensors. (A and B) Drug substance dataset. (A) q(2). Each element shows the probability that a substance in group i and a
substance in group j are part of the same drug. Elements are colored according to the colorbar on the right-hand side (light colors are values very close to
zero). (B) q(3); each K × K matrix represent a slice q3

·k of the matrix for a fixed value of index k. Each element shows the probability that three substances in
groups i, J, and k are in the same drug. (C and D) Gene interaction dataset. (C) q(2). (D) q(3); same representation as in panel B. These tensors were obtained
by obtaining model parameters for all the available data using K = 6 for the drug substance dataset and gene interaction dataset (see Materials and Methods
for the selection of the values of K ). We show only the matrix for the best posterior of all the maxima we obtained after applying the EM algorithm to different
random initializations of model parameters. Other matrices display similar features.

predictions about hyperedges of different orders. We find that,
typically, when the number of observed interactions is low, 2-
node interactions are more informative about 3-node interactions
than vice-versa. This is due to the fact that, while hypergraphs
are generally sparse, there is typically a larger observed fraction
of 2-node interactions than 3-node interactions. Our analysis
shows that the same reasoning can be extended to higher-order
interactions as well.

Second, our approach enables us to explore the validity of the
assumptions typically made in generative models for hypergraphs,
namely that a unique set of group memberships is valid to describe
hyperedges of any size and that statistical interaction mechanisms
driving the formation of higher-order interactions are assortative.
Our analysis for real data shows that while the former hypothesis
seems to hold true, this is not the case for the latter necessarily.
The comparison of our approach with the equivalent assortative
model shows that, despite the apparent limitations of our model
in terms of scalability, it clearly outperforms the assortative
approach in the task of edge prediction, thus showing that
the advantages of model expressiveness outweigh algorithm
scalability in this case. Furthermore, the inspection of connection
probability tensors reveals that there are connection mechanisms
that go beyond both assortativity and simplicial closure.

Our results thus highlight the need for good reconstructions
of low-order interactions in order to have reliable reconstructions
of full hypergraphs, put forward the importance of considering
different statistical mechanisms in the formation of higher-order
interactions, and shed light on previous algorithms that consider
low-order simplex closure as a temporal mechanism hyperedge
formation (33). Our work opens the door to investigating in
more depth statistical mechanisms of hyperedge formation and
understanding where current inference approaches for predicting
higher-order interactions might fail.

Materials and Methods

Synthetic Data. We generate synthetic networks using a mixed-membership
stochastic block model with the following parameters:

1) We consider two underlying groups (K = 2). Therefore, we consider
membership � vectors of length two, q2 is 2×2 matrix, and q3 is 2×
2× 2 tensor.

2) Nodes can have two possible membership vectors �1 = [0.05, 0.95] and
�2 = [0.95, 0.05] nodes are split into two even groups.

3) We use the following connectivity tensors:

q(2) =

(
0.9 0.1
0.1 0.9

)
, [6]

q(3)
..0 =

(
0.9 0.1
0.1 0.1

)
, [7]

q(3)
..1 =

(
0.1 0.1
0.1 0.9

)
. [8]

The resulting model has a larger density of 2-body and 3-body interactions
between nodes that have the same node memberships. In our analysis, we
consider 100 nodes. The average density of interactions is 50% for two body
interactions and 30% for three body interactions. A density which is typically
higher than in real networks (and therefore an “easy” problem) but that it is
useful to describe the leading phenomenological traits.

Real Data.
Drug substances. We consider the NDC-substances dataset provided in ref. 34.
From this dataset, we consider two different datasets: i) drugs which comprise 2
and 3 substances. We limit 3-substance drugs to those that have substances for
which at least one 2-substance interaction has been reported. Overall this means
that we have 302 different substances for which we have 568 substances for
which we have 850 2-substance drugs and 408 3-substance drugs (which involve
302 substances)—Fig. 3 A and B; ii) drugs which comprise, 2, 3, 4, or 5 substances.
We only consider 4 and 5-substance drugs for which 2 or 3-substance drugs
have been reported. Overall, this means we consider 415 different substances
for which have been reported: 402 2-substance drugs, 340 3-substance drugs,
322 4 substance-drugs and 225 5-substance drugs—Fig. 3 C and D.

In both cases, to construct observed sets of binary interactions, we assume
that drug combinations that do not appear in the database correspond to
noninteracting combinations of substances. We add as many noninteractions as
needed to have a 10% of interactions in the observation. The choice of a 10% is
a choice we make in order to ensure that even for small test/training sets there
is a measurable amount of substance combination that correspond to existing
hyperedges in the dataset.
Gene interactions in S. cerevisiae. In ref. 18, Kuzmin et al. investigated the
effect of gene-knockouts involving a total of 1,182 different genes on the growth
of S. cerevisiae. We consider the set of 410,339 digenic and 91,111 trigenic
interactions reported in ref. 18 (Data_S1.csv in their supplementary material).
We followed their analysis and considered as “significant” digenic interactions
(i.e., edge weight equal to 1) those interactions such that the absolute value
of differential growth �ij of the double mutant (fij) with respect to that single
mutant (fi) is |�ij| > 0.08 and has a P-value < 0.05, which amounts to
9.363 significant digenic interactions. We considered as significant (negative)
trigenic interactions those in which the differential growth of the triple mutant
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�ijk = fijk − fifjfk − �ijfk − �jk fi − �kifj fullfils the condition �ijk < −0.08
and has a P-value < 0.05. In total, there are 3,196 significant negative trigenic
interactions.

Inference Equations. Expressing the log posterior in Eq. 5 in terms of the
mixed-membership SBM model for the probability of observing an interaction
between a set of nodes, we obtain that

log P({�, q}|AO) =
∑

n
log L

((
A0
)(n)
|�, q(n)

)
=
∑

n
log

∏
{ij}∈(AO)

n

p
((

AO)n
{ij}
|�, q(n)

)

=
∑

n

∑
{ij}∈(AO)

(n)

log
(

p
((

AO)n
{ij}
|�, q(n)

))

=
∑

n

 ∑
{ij}/(AO)

(n)
{ij}

=1

log
∑
{�j}

n∏
j=1

�ij�j
q(n)
{�i}

+
∑

{ij}/(AO)
(n)
{ij}

=0

log
∑
{�j}

n∏
j=1

�ij�j
(1− q(n)

{�j}
)

 , [9]

where {ij} := (i1 . . . in) and {�j} := (�1 . . . �n). To obtain the parameters
�? and q? that maximize the log posterior, we follow an Expectation
Maximization approach.

By introducing an auxiliary function !x
{ij}

({�j}); x = 0, 1 with
∑
{�j}

!x
{ij}

({�j}) = 1 for each term in the logarithm and using Jensen’s inequality

for each term in the sum:

log

∑
{�j}

n∏
j=1

�ij�j
q(n)
{�j}



= log

∑
{�j}

∏n
j=1 �ij�j

q(n)
{�j}

!1
{ij}

({�j})
!1
{ij}

({�j})


≥

∑
{�j}

!1
{ij}

({�j}) log


∏n

j=1 �ij�j
q(n)
{�j}

!1
{ij}

({�j})

 .

log

∑
{�j}

n∏
j=1

�ij�j
(1− q(n)

{�j}
)



= log

∑
{�j}

∏n
j=1 �ij�j

q(n)
{�j}

!0
{ij}

({�j})
!0
{ij}

({�j})


≥

∑
{�j}

!0
{ij}

({�j}) log


∏n

j=1 �ij�j
q(n)
{�j}

!0
{ij}

({�j})

 .

Note that the index x is unnecessary because from the indices {ij} we already
know whether A{ij} is 1 or 0. However, we keep it for clarity.

Putting everything together, we obtain the following inequality for the log
posterior:

log P
(
{�, q}|AO

)
≥

∑
n

∑
{ij}/(A0)n

{ij}
=1

∑
{�j}

!1
{ij}

({�j})

× log


∏n

j=1 �ij�j
q(n)
{�j}

!1
{ij}

({�j})


+
∑

n

∑
{ij}/(A0)n

{ij}
=0

∑
{�j}

!0
{ij}

({�j})

× log


∏n

j=1 �ij�j
(1− q(n)

{�j}
)

!0
{ij}

({�j})

 . [10]

In the above expression, the equality is met when

!1
{ij}

({�j}) =

∏n
j=1 �ij�j

q(n)
{�j}∑

{�′j }
∏n

j=1 �ij�′j
q(n)
{�′j }

, and [11]

!0
{ij}

({�j}) =

∏n
j=1 �ij�j

(
1− q(n)

{�j}

)
∑
{�′j }

∏n
j=1 �ij�′j

(
1− q(n)

{�′j }

) . [12]

The evaluation of these equations is called the expectation step.
Then, maximizing the right hand side of the above equation subject to the

constraints
∑
� �i� = 1 yields the following (maximization) equations for the

� and q:

�ik�k
=

∑
n
∑
{ij}k;{�j}k

!{ij}k;ik ({�j}k; �k)∑
n dik ,n

, [13]

qn({�j}) =

∑{
{ij}/(A0)n

{ij}
=1
} !1
{ij}

({�j})∑
{ij} !{ij}({�j})

, [14]

where we have dropped the superindices in! for simplicity; {ij}k represents the
set of node indices except ik , {�j}k represents the set of groups indices except
�k and dik ,n is the number of interactions involving n nodes in which node ik
participates.

The EM algorithm then works as follows:

1. Generate random initial conditions for � and q.
2. Expectation Step: compute auxiliary functions! using Eqs. 11 and 12.
3. Maximization Step: compute new values of � and q using Eqs. 13 and 14.
4. Iterate Steps 2 and 3 until convergence.

Assortative mixed-membership SBM. In the assortative version of our model,
connection probability tensors have elements equal to zero except for the
diagonals so that the probability of an edge existing is then:

p(A(n)
i1 ,...,in

= 1|�, q(2)) =
∑
�

q(n)
�

n∏
k=1

�ik� . [15]

The inference equations are then derived in the same way as for the full model.
Making predictions. The EM maximization method will find a local optimum in
the posterior landscape. However, in order to make predictions the best estimate
for p(A{i1···M} = 1|Ao) comes from integrating over all possible parameters
{�, q}, that is, by computing

p(A{ik}|A
o) =

∫
d�
∫

dq p(A{ik}|{�, q}) .p({�, q}|Ao). [16]
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A B

Fig. 6. Selection of the value of K for real datasets. (A) Drug substances. Performance at predicting 2 and 3-substance drug compositions using 2 and 3
substance drug compositions in the dataset versus the number of latent groups K . (B) Gene interactions. Performance at predicting 2 and 3-gene interactions
using 2-gene and 2 and 3-gene interactions in the training set, 3-gene and 2 and 3-gene interactions in the training set, respectively.

However, because this is an infeasible task, we estimate this probability by
averaging over local maximaM in the posterior p({�, q}|Ao) landscape so
that

p(A{ik}|A
o) =

∑
{�,q}∈M

p(A{ik}|{�, q}). [17]

Selection of K. To select the best value of K for rel datasets, we follow a cross-
validation procedure varying the value of K. We select the smallest value of K for
which the cross-validation prediction performance starts to saturate. For the drug
substance dataset, we use a value of K = 6 (Fig. 6A). For the gene interaction
dataset, we use a value of K = 6 (for digenic only, and digenic and trigenic

interactions) and a value of K = 2 for trigenic interactions only since due to the
small number of trigenic interactions available, larger values of K already overfit
in this case (Fig. 6B).

Data,Materials, and SoftwareAvailability. The code for the implementation
of the full model and the assortative model is available at https://github.com/
seeslab/HyGMMSBM. Previously published data were used for this work (18, 33).
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