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Optimal Network Topologies for Local Search with Congestion
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The problem of searchability in decentralized complex networks is of great importance in computer
science, economy, and sociology. We present a formalism that is able to cope simultaneously with the
problem of search and the congestion effects that arise when parallel searches are performed, and we
obtain expressions for the average search cost both in the presence and the absence of congestion. This
formalism is used to obtain optimal network structures for a system using a local search algorithm. It is
found that only two classes of networks can be optimal: starlike configurations, when the number of
parallel searches is small, and homogeneous-isotropic configurations, when it is large.
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links—which is the topology that optimizes the search
process? We consider a general situation where the net-

[16,17,19]. In this context, we are able (i) to calculate
explicitly the point at which the arrival rate of packets
Recently, the study of topological and dynamical prop-
erties of complex networks has received a lot of interest
[1–3]. Part of this interest comes from the attempt to
understand the topology and behavior of computer based
communication networks such as the Internet [4] and the
World Wide Web [5,6]. However, the study of communi-
cation processes in a wider sense is of interest in other
fields, remarkably the design of organizations [7–9].

One of the general principles that has been discovered
in many such complex networks is the short average dis-
tance between nodes [1]. More surprisingly, it has been
shown that these short paths can be found with essentially
local strategies, i.e., with strategies that do not require
precise global information of the network. Indeed, for
social networks, this fact was experimentally confirmed
a long time ago by the famous experiment of Travers and
Milgram [10] and theoretical explanations have been
given by Kleinberg [11] and, more recently, by Watts
et al. [12]. These explanations are based on the plausible
assumption that there is a structure (social, geographical,
etc.) that underlies the complex social network and pro-
vides information that can be exploited heuristically in a
search process. In scale-free communication networks
and in some decentralized peer-to-peer communication
networks such as Gnutella or Freenet, it has been shown
[13,14] that the skewness of the degree distribution and
the existence of highly connected hubs allows the design
of algorithms that search quite efficiently even when the
size of the system is large.

Our approach in the present work is complementary to
these efforts. The question we pose is the following: given
a search algorithm that uses purely local information—
i.e., knowledge of the first neighbors in the network—and
a fixed set of resources—i.e., a fixed number of nodes and
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work has to tackle several simultaneous (or parallel)
search problems, which in turn raises the important issue
of congestion [15–18] at overburdened nodes. Indeed, for
a single search problem the optimal network is clearly a
highly polarized starlike structure. This structure is
cheap to assemble in terms of number of links and
efficient in terms of searchability, since the average cost
(number of steps) to find a given node is always bounded
(two steps), independently of the size of the system.
However, the polarized starlike structure will become
inefficient when many search processes coexist in parallel
in the network, due to the limitation of the central node.

The discovery of optimal structures will be a useful
guide to design, redesign, and drive the evolution of
communication networks such as peer-to-peer networks,
distributed databases, and organizations.

In this Letter we present a formalism that is able to
cope with search and congestion simultaneously, allow-
ing the determination of optimal topologies. This formal-
ism avoids the problem of simulating the dynamics of the
search-communication process which turns out to be
impracticable, specially close to the congestion point
where search costs (time) diverge. We do not focus on
detailed models of any of the above mentioned commu-
nication networks (organizations, computer networks,
etc.). Rather, we study a general scenario applicable to
any communication process. First, we calculate the aver-
age number of steps (search cost) needed to find a certain
node in the network given the search algorithm and the
topology of the network. The calculation is exact if the
search algorithm is Markovian. Next, congestion is in-
troduced assuming that the network is formed by nodes
that behave like queues, meaning that they are able to
deliver a finite number of packets at each time step
 2002 The American Physical Society 248701-1
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leads to network collapse, in the sense that the average
time needed to perform a search becomes unbounded, and
(ii) to determine, below the point of collapse, how the
average search time depends on the rate at which search
processes are started. In both cases, the relevant quanti-
ties are expressed in terms of the topology of the network
and the search algorithm. Finally, we obtain optimal
structures by performing exhaustive generalized simu-
lated annealing [20,21] in the space of the networks
with fixed size and connectivity. We find that when the
number of parallel searches is small, the starlike configu-
ration turns out to be optimal as expected, while for a
large number of parallel searches, a very decentralized
and uniform network is best. Surprisingly, no other struc-
tures apart from these extremely centralized and ex-
tremely decentralized networks are found to be optimal.

First, we consider the average cost to find a given node
in an arbitrary communication network when there is no
congestion. Specifically, we focus on a single information
packet at node i whose destination is node k, i.e., a packet
searching for k. The probability for the packet to go from
i to a new node j in its next movement is pk

ij. In particular,
pk
kj � 0 8 j so that the packet is removed as soon as it

arrives at its destination. The precise form of pk
ij will

depend on the search algorithm. In particular, when the
search is Markovian, pk

ij does not depend on previous
positions of the packet. In this case, the probability of
going from i to j in n steps is given by

Pk
ij�n� �

X

l1;l2;...;ln�1

pk
il1
pk
l1l2

� � �pk
ln�1j

: (1)

Thus defining the matrices pk and Pk�n� we have

Pk�n� � �pk�n: (2)

We next define the effective distance matrices

dk �
X1

n�0

nPk�n� �
X1

n�0

n�pk�n � ��I� pk��1	2pk; (3)

whose elements dkij are the average number of steps
needed to go from i to j for a packet traveling towards
k [22]. In particular, the element dkik is the average number
of steps needed to find k starting from i. When the search
algorithm is such that the packets follow minimum paths
between nodes, the effective distance will coincide with
the topological minimum distance; otherwise, the effec-
tive distance between nodes will be, in general, larger
than the topological minimum distance. Finally, the aver-
age search cost in the network when there is not conges-
tion is

d �

P
i;k d

k
ik

S�S� 1�
; (4)

where S is the number of nodes in the network.
Consider next which is the centrality of each of the

nodes in the communication network. First, we calculate
the average number of times, bkij, that a packet generated
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at i and with destination k passes through j. According to
the previous definitions

bk �
X1

n�1

Pk�n� �
X1

n�1

�pk�n � �I� pk��1pk: (5)

The effective betweenness of node j, Bj, is defined as

Bj �
X

i;k

bkij: (6)

Again, as in the case of the effective distance, when the
search algorithm is able to find the minimum paths
between nodes, the effective betweenness will coincide
with the topological betweenness, �j, as usually defined
[23,24]. The effective betweenness of the nodes in a net-
work contains valuable information about its behavior
when multiple searches are performed simultaneously
and congestion considerations become relevant.

Consider the following general scenario. In the com-
munication network, each node generates packets at a rate
� per unit of time, independently of the rest of the nodes.
The destination of each of these packets is randomly fixed
at the moment of its creation. On the other hand, the nodes
are queues that can store as many packets as needed but
can deliver, on average, only a finite number of them at
each time step —without loss of generality, we fix this
number to 1. It is known [16–18] that for low values of �
the system reaches a steady state in which the total
number of floating packets in the network N�t� fluctuates
around a finite value. As � increases, the system under-
goes a continuous phase transition to a congested phase in
which N�t� / t [16]. Right at the critical point, �c, quan-
tities such as N�t� and the characteristic time diverge [25].
Below �c, there is no accumulation at any node in the
network and the number of packets that arrive at node j is,
on average, �Bj=�S� 1�. Therefore, a particular node
will collapse when �Bj=�S� 1� > 1 and the critical con-
gestion point of the network will be

�c �
S� 1

B�
; (7)

where B� is the maximum effective betweenness in the
network, which corresponds to the most central node.

To calculate the average of the load of the network,
hN�t�i, it is necessary to establish the behavior of the
queues. In the general scenario proposed above, the ar-
rival of packets at a given node j is a Poisson process with
mean �j � �Bj=�S� 1�. Regarding the delivery of
packets, assume the simplest case in which it is also a
Poisson process and hence the time between two con-
secutive packet deliveries follows an exponential distri-
bution [26]. In general, when the arrival and delivery
processes are Poisson, the average size of the queues is
given by [19,27]

h�ji �
�j

1��j
�

�Bj

S�1

1�
�Bj

S�1

: (8)
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FIG. 1 (color online). Optimal structures for local search with
congestion. Top: starlike configuration optimal for � < �� (left)
and homogeneous-isotropic configuration optimal for � > ��

(right). Bottom: polarization of the optimal structure as a
function of �, for networks of size S � 32 and different number
of links L.
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The average load of the network hN�t�i is

hN�t�i �
XS

j�1

h�ji �
XS

j�1

�Bj

S�1

1�
�Bj

S�1

: (9)

There are two interesting limiting cases of this expres-
sion. When � is very small, h�ji � �j and taking into
account that

P
j Bj �

P
i;k d

k
ik, one obtains

hN�t�i � �Sd � ! 0: (10)

On the other hand, when � approaches �c most of the load
of the network comes from the most congested node, and
therefore [28]

hN�t�i �
1

1� �B�

S�1

� ! �c: (11)

It is worth noting that there are only two assumptions
in the calculations above. The first one has already been
mentioned: the movement of the packets needs to be
Markovian to define the jump probability matrices pk.
Although this is not strictly true in real communication
networks—where packets are not allowed usually to go
through a given node more than once —it can be seen as a
first approximation [16–18]. The second assumption is
that the jump probabilities pk

ij do not depend on the
congestion state of the network, although communication
protocols sometimes try to avoid congested regions, and
then Bj � Bj��� [29]. Our calculations, in particular,
Eqs. (7)–(11), correspond to the worst case scenario and
thus provide bounds to more realistic scenarios in which
the search algorithm interactively avoids congestion.

Equations (5), (6), and (9) enable us to tackle the
problem of finding optimal structures for local search.
Optimality is defined as minimization of the average time
needed to perform a search. Indeed, according to Little’s
law [19], the average time needed by a packet to reach its
destination is proportional to the total load of the net-
work, and therefore minimizing hN�t�i is equivalent to
minimizing the average cost of a search. In a local search
scenario, the pk matrices are given by

pk
ij � aik�jk � �1� aik � �ik�

aijP
l ail

; (12)

where aij are the elements of the adjacency matrix of the
network. The first term corresponds to i and k being
neighbors: then the packet will go to j if and only if
j � k; i.e., the packet will be sent directly to the destina-
tion. The second term corresponds to i and k not being
neighbors: in this case, j is chosen at random and uni-
formly among the neighbors of i. Finally, the delta sym-
bol ensures that pk

kj � 0 8 j and the packet disappears
from the network.

The optimization process is carried out using general-
ized simulated annealing as described in [20,21]. Starting
from a given initial network configuration, random rewir-
ing of individual links is performed, the cost hN�t�i is
evaluated according to (9), and the change is accepted
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with a certain probability that depends on a computa-
tional temperature, which is decreased so that the system
tends to explore regions of the configuration space with
lower and lower costs. Regarding the cooling, at a given
temperature, each node of the network is allowed to try a
rewiring. Then the temperature is decreased by 1%, and
the process is repeated until a minimum temperature is
reached or, alternatively, the system has remained un-
changed after a significantly large amount of rewiring
trials. Different sets of initial conditions are explored: for
a given value of �, the optimization process is started
from random initial configurations and also from net-
works that turned out to be optimal at similar values of
�. Of all the realizations, only the network with the
smallest cost is considered as optimal.

The results of the optimization process are shown in
Fig. 1. For � ! 0, the optimal network has a starlike
centralized structure as expected, which corresponds to
the minimization of the average effective distance be-
tween nodes [Eq. (10)]. On the other extreme, for high
values of �, the optimal structure has to minimize the
maximum betweenness of the network, according to
Eq. (11). This is accomplished by creating a homogeneous
network where all the nodes have essentially the same
degree, betweenness, etc. To characterize the networks at
all values of �, we introduce a measure of the polar-
ization, �, of the network:

� �
�� � h�i

h�i
; (13)

where � is, as before, the topological betweenness of the
nodes. For starlike networks, the value of � is large while
for very homogeneous networks � � 0. Although one
248701-3
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could expect that optimal networks cover the whole range
of values from � � �star to � � 0, the results of the
optimization process reveal a completely different sce-
nario. According to simulations, starlike configurations
are optimal for � < ��; at this point, the homogeneous
networks that minimize B� become optimal. Therefore
there are only two type of structures that can be optimal
for a local search process: starlike networks for � < ��

and homogeneous networks for � > ��.
In summary, we have found analytical expressions for

the relationship between topological properties of net-
works and the specific dynamic behavior when faced
with local search with congestion. These expressions
allow the calculation of the search cost in terms of the
effective betweenness of the nodes, which is calculated
via the transition probability matrices (formal expres-
sions of the search algorithm). This formalism allows
one to perform an exhaustive search for optimal topolo-
gies in terms of parallel searchability avoiding the simu-
lation of the dynamics of the parallel search process,
which is prohibitive in computational time. Moreover,
the formalism is general enough to deal with other search
scenarios—local searches with knowledge up to second
nearest neighbors, third nearest neighbors, and so on
(eventually, global knowledge) —simply redefining the
pk
ij elements. We find that the optimal network topologies

for local search considering congestion are split in
two categories: a starlike network topology, which is
optimal for a small number of parallel searches, and the
homogeneous-isotropic network topology, which is opti-
mal for large numbers of parallel searches. Strikingly, the
transition between these categories is sharp; i.e., we are
not able to find any optimal network topology different
from these two classes.
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