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Abstract
In social networks, individuals constantly drop ties and replace them by new ones in a highly

unpredictable fashion. This highly dynamical nature of social ties has important implications

for processes such as the spread of information or of epidemics. Several studies have demon-

strated the influence of a number of factors on the intricate microscopic process of tie replace-

ment, but the macroscopic long-term effects of such changes remain largely unexplored. Here

we investigate whether, despite the inherent randomness at the microscopic level, there are

macroscopic statistical regularities in the long-term evolution of social networks. In particular,

we analyze the email network of a large organization with over 1,000 individuals throughout

four consecutive years. We find that, although the evolution of individual ties is highly unpre-

dictable, the macro-evolution of social communication networks follows well-defined statistical

patterns, characterized by exponentially decaying log-variations of the weight of social ties

and of individuals’ social strength. At the same time, we find that individuals have social signa-

tures and communication strategies that are remarkably stable over the scale of several years.

Introduction
Individuals thrive in a social environment through the construction of social networks. Ties in
these networks satisfy individual needs and are necessary for well-being, but the effort, time
and cognitive investment that each tie requires limit the ability of individuals to maintain them
[1–3]. As a result of this limit, social networks are intrinsically dynamical, with individuals con-
stantly dropping ties and replacing them by new ones [1, 2, 4].

Several factors are known to play an important role in the intricate microscopic process of
tie replacement—for example, mechanisms such as homophily [5] and triadic closure [6] have
been found to generally drive tie creation [4]. However, these processes are remarkably noisy
[4] and are modulated by the distinct social behaviors of each individual [1–3], so that in the
short term individual ties appear and decay in a highly unpredictable fashion.

Here we investigate whether, despite the intricacies and randomness of the tie formation and
decay processes at the microscopic level, there are macroscopic statistical regularities in the long-
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term evolution of social communication networks. Statistical regularities have indeed been
reported in the activity patterns of single individuals, and are likely driven by daily and weekly
periodicities (e.g. in communication [7–10] and mobility [11, 12]); statistical regularities have
also been reported in the long-term evolution of human organizations [13–17] and human infra-
structures such as the air transportation system [18]. However, due to the difficulty of tracking
social interactions of a large pool of individuals for a long time, we still lack a clear picture of what
statistical regularities emerge in the long-term evolution of social networks. In particular, beyond
relatively short periods of time of 12 to 18 months [2–4, 19], we do not know up to what extent
social networks remain stable, or whether individuals change their social behavior with time.

Besides the academic interest of these questions, they are also of practical relevance because
the structure of social networks plays an important role in processes such as the spread of
information or epidemics [20–22]. The static analysis of communication networks has shed
light on some important aspects (e.g. the role of weak ties in keeping the stability of social net-
works [23]). However, it is increasingly clear that ignoring network dynamics can lead to very
poor models of collective social behavior, and that even fluctuations at a microscopic level
often have a large impact on social processes [24].

To elucidate these questions, here we analyze the evolution of an email network [25] of hun-
dreds of individuals within an organization over a period of four consecutive years. We find
that, although the evolution of individual ties is highly unpredictable even in the long term, the
macro-evolution of social communication networks follows well-defined statistical patterns,
characterized by exponentially decaying log-variations of the weight of social ties and of indi-
viduals’ social strength. At the same time, we find that individuals have long-lasting social sig-
natures and communication strategies.

Data
We analyze the email network of a large organization with over 1,000 individuals for four con-
secutive years (2007-2010). For this period, we have information of the sender, the receiver and
the time stamp of all the emails sent within the organization using the corporate email address.
To preserve users’ privacy, individuals are completely anonymized and we do not have access
to email content (see Methods). The email networks for each year comprise n2007 = 1,081, n2008
= 1,240, n2009 = 1,386, and n2010 = 1,522 individuals. The total number of emails recorded each
year is l2007 = 211,039, l2008 = 303,619, l2009 = 368,692, and l2010 = 444,493.

Since the number of emails sent from i to j during a year is typically similar to the number
of emails sent from j to i (see S1 File), we consider the undirected weighted network in which
the weight ωij of the connection between users (i, j) represents the total number of emails
exchanged by this pair of users during one year. Because we are interested in non-spurious
social relationships, in our analysis we only consider connections with weight ωij � 12, that is
we only consider connections between pairs of users that exchange at least an email per month
on average. Such filters are known to generate networks whose connections resemble more
closely self-reported social ties [26].

Results

The long-term evolution of email communication follows well-defined
statistical patterns
We characterize the long-term evolution of email communication networks in terms of two
properties: the weight ωij(t) of connections for year t (Fig 1); and the user strength si(t) = ∑j
ωij(t) (Fig 2) [27], that is, the total number of emails exchanged by each user i during year t.
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Fig 1. Time evolution of connections’weights. The weightωij of a connection between users (i, j) corresponds to the number of emails exchanged by i and
j during a whole year. We only consider connections withω� 12 (see text) (A) Distributions of weights for each one of the years in our dataset (2007-2010).
Note that the distribution is stable in time. (B) Distribution of the centered weight logarithmic growth rates r0o ¼logðoðt þ DtÞÞ �logðoðtÞÞ � mðt;DtÞ for Δt = 1, 2,
3 (dots, squares and diamonds, respectively). Lines show fits to the convolution of a Laplace distribution and a Gaussian distributed noise (see Eq (5))
(parameters Δt = 1: σexp = 0.43, and σG = 0.35, Δt = 2: σexp = 0.50, and σG = 0.47 and Δt = 3: σexp = 0.50, and σG = 0.60). Note that as Δt increases the peaks
are rounder and the distributions are slightly wider (see Fig D in S2 File). See Fig B in S2 File for values of the distribution modes μ(t, Δt).

doi:10.1371/journal.pone.0146113.g001

Fig 2. Time evolution of nodes’ strengths. The strength si of node i is the number of emails that user i exchanged with other users during one year. (A)
Distributions of strengths for each one of the years in our dataset (2007-2010). Note that the distribution is stable in time. (B) Distribution of centered strength
logarithmic growth rates r0s ¼logðsðt þ DtÞÞ �logðsðtÞÞ � mðt;DtÞ for Δt = 1, 2, 3 years (dots, squares and diamonds, respectively). Lines show fits to a Laplace
distribution (parameters Δt = 1: σexp = 0.57, Δt = 2: σexp = 0.74 and Δt = 3: σexp = 0.83). Note that as Δt increases the distributions are wider (see Fig D in S2
File). For the specific values of the distribution modes μ(t, Δt) see Fig B in S2 File.

doi:10.1371/journal.pone.0146113.g002
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The distributions of connection weights and user strengths have two remarkable features
(Figs 1A and 2A). First, these distributions are fat-tailed, with values spanning over three
orders of magnitude. Second, these distributions are stable for the four years we study (despite
a small but significant shift towards higher number of emails).

Besides the overall stability of the distributions, we observe a large variation in connection
weights and user strengths from year to year. To characterize this variation, we define the loga-
rithmic growth rates [13–18]

roðt;DtÞ ¼ log
oðt þ DtÞ

oðtÞ
� �

ð1Þ

rsðt;DtÞ ¼ log
sðt þ DtÞ

sðtÞ
� �

; ð2Þ

and study their distributions (Figs 1B and 2B). These distributions are tent-shaped and have
exponentially decaying tails. For fixed Δt the mode μ(t, Δt) of the distribution changes slightly
with the starting year t = 2007, 2008, 2009, which is significant for t = 2007 but not significant
for t = 2008 and t = 2009 (see Figs B and C in S2 File). Remarkably, if we consider the distribu-
tions of logarithmic growth rates centered at zero r0 = r − μ(t, Δt) then these distributions are
stationary (see S2 File). Moreover, the same functional form that describes growth rates from
one year to the next, Δt = 1 year, also describes growth rates at Δt = 2 years and Δt = 3 years.
For user strengths, a Laplace distribution

PLðr0Þ ¼
exp ð�jr0j=sexpÞ

2sexp

ð3Þ

provides the best overall fit to the data (as determined by the Bayesian information criterion
[28]; see S2 File). For connection weights a pure Laplace distribution does not provide a good
fit to the data because of the rounding of the distribution around its mode. In this case, we

obtain the best fit if we assume that the observed centered rate r0 is a combination r0 ¼ ~r0 þ �,

where ~r0 is Laplace distributed according to Eq (3) and � is a normally distributed “noise”, so
that P(r0) is the convolution of a Laplace and a normal distribution (see Eq (5) and S2 File in
Supplementary Material). Note that as Δt increases, the width of the Laplace distribution and
the intensity of the Gaussian noise in Pðr0oÞ increases.

Tent-shaped distributions with exponentially decaying tails are common in the growth of
human organizations [13–17], and have also been reported in the growth of complex weighted
networks [18]. The exponential tails of these distributions imply that fluctuations in connec-
tion weights and user strengths are considerably larger than one would expect from a process
with Gaussian-like fluctuations.

Logarithmic growth rates are largely unpredictable despite significant
correlations
The fact that long-term growth rates follow well-defined distributions raises the question of
whether it is possible to quantitatively predict the evolution of the network. To investigate this,
we start by studying whether there are long-term trends in the logarithmic growth rates. Note
that in the previous section we have found that logarithmic growth rate distributions are not
stationary as distributions change slightly their modes (see Fig B in S2 File). However, we note
that the displacement of the distribution is small compared to prediction errors. Additionally,
since the aim is to predict future growth rates, the displacement of future distributions is in
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practice unknown. Therefore we use uncentered logarithmic growth rates rω and rs in the pre-
diction analysis. In particular, we analyze whether there are significant correlations between
the logarithmic growth rate in one year and the logarithmic growth rate the following year
(Fig 3A–3B). We find that the correlation is not significant for strength logarithmic growth
rates, and significant but negative for weight logarithmic grow rates (Spearman’s ρ = −0.16,
p = 1.5 � 10−27).

In fact, we find that the network properties at time t that are most correlated with the loga-
rithmic growth rates rω(t + 1) and rs(t + 1) are the connection weight (Spearman’s ρ = −0.24,
p = 4.9 � 10−61) and the user strength (Spearman’s ρ = −0.11, p = 2.6 � 10−6), respectively (Fig
3C–3D; see S3 File for other network properties). These correlations are negative, which

Fig 3. Predictability of logarithmic growth rates for connection weight rω(t + 1) (A, C, E) and user strength rs(t + 1) (B, D, F). (A) Joint probability
density of rω(t + 1), the logarithmic growth rate of weights at time t + 1, and rω(t), the logarithmic growth rate of weights at time t. (B) Joint probability density of
rs(t + 1), the logarithmic growth rate of strengths at time t + 1, and rs(t), the logarithmic growth rate of strengths at time t. (C) Joint probability density of rω(t
+ 1), the logarithmic growth rate of weights at time t + 1, andω(t), the weight at time t. The area shaded in grey area is no allowed since rω(t + 1)� − logω(t).
(D) Joint probability density of rs(t + 1), the logarithmic growth rate of strengths at time t + 1, and s(t), the strength at time t. The area shaded in grey is
forbidden since rs(t + 1)� − log s(t). In plots (A-D), circles and error bars show the mean and one standard error of the mean for values binned along the X
axis. It is visually apparent thatω(t) and s(t) are more informative about rω(t + 1) and rs(t + 1), respectively, than rω(t) and rω(t) (as confirmed by Spearman’s ρ
and p-values, displayed inside each graph). (E, F) Root mean squared error (MSE) of the predictions of the logarithmic growth rates at time t + 1 obtained
from leave-one-out experiments. As predictors, we use: (E)ω(t), rω(t), and μω(t) (see Eq (5)); (F) s(t), rs(t), and μs(t) (see Eq (3)). Additionally, in both cases
we try to predict the logarithmic growth rate using a Random Forest regressor [29]. Note that a simple approach (i.e. considering the weight/strength at time t)
performs significantly better than a well-performing machine learning algorithm such as the Random Forest. In any case, and despite being the most
predictive, weight/strength at time t only provide moderate improvements over predictions made using the mean value μω for all connections and μs for all
users.

doi:10.1371/journal.pone.0146113.g003
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indicates that small values of connection weight and user strength grow faster than large values,
also that negative values of weights and strengths are not allowed. In any case, despite the sig-
nificance of these correlations, the high variability of rω(t + 1) and rs(t + 1) for fixed values of
ω(t) and s(t), respectively, raises the question of whether the correlations can be used reliably
to predict the evolution of the network.

To quantify the predictive power of these variables, we carry out leave-one-out experiments
to predict logarithmic growth rates rω(t + 1) and rs(t + 1) from network properties at time t
(Fig 3E–3F). We investigate different approaches: (i) assuming the same growth equal to the
mean growth μω(t) and μs(t) for all predictions of rω(t + 1) and rs(t + 1), respectively (note that
as it is shown in Fig D in S2 File, mean growths are very close to zero); (ii) using individual net-
work observables as predictors, in particular, ω(t) and rω(t) for rω(t + 1), and s(t) and rs(t) for
rs(t + 1); and (iii) using a well-performing machine learning approach such as a Random Forest
regression [29] with an array of network observables (see S3 File for more details). We find that
using the Random Forest does not yield significantly better predictions than using the average
expected growth for all predictions. Using the most correlated variables ω(t) and s(t) for rω(t
+ 1) and rs(t + 1) respectively, only shows a modest improvement (Fig 3E–3F). Our results
therefore suggest that the existence of correlations is not enough to build a satisfactory predic-
tive model for the logarithmic growth rates (and that black box methods like Random Forests
may, in fact, be even less appropriate).

Social signatures are stable in the long term
Next, we seek to better understand the evolution of the communication behavior of individual
users. Recent results suggest that the way individuals divide their communication effort among
their contacts (their so-called “social signature”) is stable over the period of a few months [3].
This is consistent with the hypothesis that humans have a limited capacity to simultaneously
maintain a large number of social interactions [1, 30].

Here, we investigate whether social signatures are stable over the period of several years. In
particular, we analyze how individuals distribute their communication activity (their emails)
among their contacts. To quantify how evenly distributed emails are among those contacts, we
use the standardized Shannon entropy Si

Si ¼
�Pki

j¼1

oij

si
log

oij

si

log ki
; ð4Þ

where ki is the number of contacts of user i. Note that Si = 1 when user i exchanges the same
number of emails with all her contacts and Si � 0 when she exchanges almost all of her emails
with a single contact (Fig 4A). We use the standardized Shannon entropy because it shows a
smaller dependence on the number of contacts than other measures of social signature such as
the Gini coefficient (Fig E in S4 File).

We find that the distribution of standardized entropies is heavily shifted towards high values
of Si (Fig 4B), which implies that most individuals tend to distribute their communication
evenly among all their contacts. We also find that the overall distribution of social signatures is
stable in time (see also Supplementary Material).

To study the stability of each individual’s social signature, we measure the difference ΔSi(Δt)
= Si(t + Δt) − Si(t) for Δt = 1, 2, 3 years (Fig 4B). We find that the distribution of ΔSi(Δt) is sym-
metric and heavily peaked around zero and stable for any fixed value of Δt (Fig A in S4 File).
Therefore since most of the users do not change their social signature during the three year
period of our analysis, our results suggest that individual’s social signatures are stable in the
long term.
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To quantify this more precisely, we compare the absolute change of a user’s standardized
entropy |ΔSi(Δt)|self = |Si(t + Δt) − Si(t)| to the typical absolute difference of entropies between
individuals |ΔSij|ref = |Si(t) − Sj(t)|, 8j 6¼ i (Fig 4C). We observe that the variation of the social
signature of a user in time is typically much smaller (even when Δt = 3 years) than the variation
between individuals, confirming that the social signature is a trait of users that persists even
during periods of several years (see Fig C in S4 File for the analysis of each individual year). In
fact, by extrapolating the values of |ΔSi(Δt)|self, we estimate that individual social signatures
may be persistent for roughly eight years.

Communication strategy is stable in the long term
A related question to the stability of the social signature is that of whether users tend to keep
the same contacts over time or not. Recent studies have shown that, in the short term, individu-
als differ in their communication strategies [1]—some individuals tend to change their contacts
frequently (“explorers”), whereas others tend to maintain contacts (“keepers”). We investigate
whether these differences exist at the scale of years and if individual communication strategies
are stable in the long term.

To that end, we consider the fraction fi(t) of all emails exchanged by user i in year t (out of
the total si(t)) with preexisting contacts, that is users with whom user i had also exchanged
emails during the previous year, t − 1. Therefore, fi(t) = 1 means user i exchanged all her emails
in year t with preexisting contacts, whereas fi(t) = 0 means that user i only exchanged emails
with new contacts.

The distribution of fi (Fig 5A) shows that most individuals are social keepers (see also Fig G
in S4 File for the turnover of the network contacts). Indeed, the mode of the distribution is
around fi(t) = 0.9, and 58% of the users exchange more than 75% of their emails with preexist-
ing contacts. Still, a non-negligible 17% of the individuals exchange more than half of their
emails in one year with new contacts. Our findings thus confirm that, even at the scale of years,
there is a variety of communication strategies [1].

Fig 4. Stability of social signatures. (A) Distribution of the standardized Shannon entropy Si (see text) for users in the period 2007–2010. Entropy
quantifies the extent to which and individual’s communication efforts are distributed among her contacts, so that Si = 1 when user i exchanges the same
number of emails with all her contacts and Si � 0 when she exchanges almost all of her emails with a single contact. Distributions for all years collapse onto a
single curve. The line shows a kernel density estimation of the four yearly datasets pooled together. (B) Distributions of the change of individual standardized
Shannon entropy ΔSi(Δt) = Si(t + Δt) − Si(t), 8i for Δt = 1, 2, 3 years (dots, squares and diamonds, respectively). The lines show the Laplace best fits based on
BIC for the three distributions (Δt = 1 σ = 0.065; Δt = 2 σ = 0.075; and Δt = 3σ = 0.085). (C) Comparison between the absolute difference in individual social
signatures |ΔSi(Δt)|self = |Si(t + Δt) − Si(t)| and the typical absolute difference of entropies between individuals |ΔSij|ref = |Si(t) − Sj(t)|. The boxplot shows
unambiguously that users have stable social signatures.

doi:10.1371/journal.pone.0146113.g004
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To study the stability of each individual’s strategy in the long term, we measure the change
Δfi(Δt) = fi(t + Δt) − fi(t) at Δt = 1 year and Δt = 2 years (Fig 5B). First, we find that distributions
are stable for fixed Δt (Fig B in S4 File). From the distributions, we also observe that most users
do not change substantially their communication strategy from year to year. However, 7% of
the individuals change their communication strategy by |Δfi(Δt)|> 0.5, and a small fraction of
individuals even change from one end to the other of the communication strategy spectrum.

Despite this variability, we find that, on average, an individual’s communication strategy is
stable in the long run (Fig 5C). In particular, we compare the absolute individual change
|Δfi(Δt)|self = |fi(t + Δt) − fi(t)| with the typical absolute difference between individuals |Δfij(t)|ref
= |fi(t) − fj(t)|, 8j 6¼ i [3]. We observe that the yearly variation of a user’s communication strat-
egy is typically much smaller (even when Δt = 2 years) than the variation between individuals,
confirming the existence of persistent communication strategies even at the scale of several
years (see Fig D in S4 File for the analysis of each individual year). By extrapolating the values
of |Δfi(Δt)|self as before, we estimate that individual strategies may persist for around seven
years.

Discussion
We have shown that the long-term macro-evolution of email networks follows well-defined
distributions, characterized by exponentially decaying log-variations of the weight of social ties
and of individuals’ social strength. Therefore, the intricate processes of tie formation and decay
at the micro-level give rise to macroscopic evolution patterns that are similar to those observed
in other complex networks (such as air-transportation or financial networks [18]), as well as in
the growth and decay of human organizations [13–17].

The fact that so diverse systems display similar stationary statistical patterns at a macro-
scopic level (and that these are stable over long periods of time) hints at the existence of univer-
sal mechanisms underlying all these processes (such as, for instance, multiplicative processes

Fig 5. Stability of individual communication strategies. (A) Distribution of the fraction of emails sent by users to pre-existing contacts fi (see text). The line
shows the kernel density estimation of the three yearly datasets pooled together. Most users exchange most of their emails with preexisting contacts. with the
maximum at fmax

e ¼ 0:90. (B) Distribution of the change of fi, Δfi(Δt) = fi(t + Δt) − fi(t) for Δt = 1, 2 years (dots and squares, respectively). The lines show the
Laplace best fits based on BIC for the two distributions (P(Δfi)*exp(−|Δfi − μ|/σ); Δt = 1 σ = 0.18 μ = 0.046; and Δt = 2 σ = 0.19 μ = 0.062). Most of the users
keep the number of emails sent to preexisting contacts constant in time, and the distributions are quite stable in time despite a slight shift towards larger
changes for larger Δt. (C) Comparison between yearly absolute individual change in the fraction of emails sent to preexisting contacts |Δfi(Δt)|self and the
typical differences between users |Δfij|ref = |fi(t) − fj(t)|, 8j 6¼ i. The boxplot shows unambiguously that individual users have a stable communication strategy
over time.

doi:10.1371/journal.pone.0146113.g005
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[16]). Remarkably, together with these statistical regularities, we also observe that individuals
have long-lasting social signatures [3] and communication strategies [1, 2], which have a psy-
chological origin, and are unlikely to have a parallel in other systems. Reconciling the univer-
sality of the macroscopic evolutionary patterns with the importance of the psychological/
microscopic processes should be one of the central aims of future studies about the evolution
of social networks.

Last but not least, it will be necessary to understand how the patterns we observe in the evo-
lution of email networks translate into other types of social networks. All existing evidence sug-
gests that email networks (as well as other techno-social networks such as mobile
communication networks [31] and online social networks [32]) are good proxies for self-
reported friendship-based social networks [26], but more analyses will be necessary to elucidate
whether network evolution is also universal. Our finding of stationary and well-defined distri-
butions, and well defined and stable social signatures and communication strategies, suggest
that may very well be the case.

Methods

Ethics statement
Our work is exempt from IRB review because: i) The research involves the study of existing
data-email logs from 2007 to 2010, which the IT service of the organization archived routinely,
as mandated by law; ii) The information is recorded by the investigators in such a manner that
subjects cannot be identified, directly or through identifiers linked to the subjects. Indeed, sub-
jects were assigned a “hash” by the IT service prior to the start of our research, so that none of
the investigators can link the “hash” back to the subject. We have no demographic information
of any kind, so de-anonymization is also impossible. Finally, we do not report results for any
individual subject (or even for groups of users), but only aggregated results for all users.

Parameter estimation and model selection for the distribution of
logarithmic growth rates
We consider the following functional forms for the distribution of logarithmic growth rates
Pðr0oÞ and Pðr0s Þ (see S2 File): i) a Laplace distribution (parameter {σexp}); ii) a Gaussian distri-
bution (parameter {σG}); iii) an asymmetric Laplace distribution (parameters {σleft, σright}); and
(iv) the convolution of a Laplace and a Gaussian distribution (parameters {σexp, σG}).

We estimate the parameters using maximum likelihood and select the best model using the
Bayesian information criterion (BIC) [28] (S2 File). We find that the best model for the distri-
bution Pðr0oÞ of logarithmic growth rates of connection weight is the convolution of a Laplace
and a Gaussian

Pconvðr0ojsexp; sGÞ ¼
Z 1

�1

e�jrj=sexp

2sexp

e�ðr0o�rÞ2=2s2G

sG

ffiffiffiffiffiffi
2p

p dr : ð5Þ

We find that the best model for the distribution Pðr0s Þ of logarithmic growth rates of user
strength is Laplace distributed (Eq (3)).

Supporting Information
S1 File. Equivalence between the directed and the undirected network of emails.
(PDF)
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S2 File. Modeling the distribution of logarithmic growth rates.
(PDF)

S3 File. Predictability of logarithmic growth rates.
(PDF)

S4 File. Social signature and communication strategies.
(PDF)
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