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Abstract. Most real-world networks considered in the literature have a modular structure. Analysis of these
real-world networks often are performed under the assumption that there is only one type of node. However,
social and biochemical systems are often bipartite networks, meaning that there are two exclusive sets of
nodes, and that edges run exclusively between nodes belonging to different sets. Here we address the issue of
module detection in bipartite networks by comparing the performance of two classes of group identification
methods – modularity maximization and clique percolation – on an ensemble of modular random bipartite
networks. We find that the modularity maximization methods are able to reliably detect the modular
bipartite structure, and that, under some conditions, the simulated annealing method outperforms the
spectral decomposition method. We also find that the clique percolation methods are not capable of
reliably detecting the modular bipartite structure of the bipartite model networks considered.

PACS. 89.75.Fb Structures and organization in complex systems

1 Introduction

Real-world networks including man-made and natural net-
works are strongly modular; in other words, the pattern
of connections among nodes is not homogeneous [1,2]. In
some instances, the modularity of a network is a conse-
quence of the fact that there are groups of nodes in the
network that preferentially connect to one another [1–8].
The ability to detect these homophilic groups is an impor-
tant task as the modular structure can affect the dynam-
ics of the system [9,10]. Furthermore, each module may
possess different structural properties, and thus global av-
erage network properties may misrepresent the structure
of the system [11]. Although community identification in
unipartite networks is now well understood, a thorough
analysis of the equivalent problem for bipartite networks
has not been made yet.

The question of detecting the organization of a bipar-
tite network is especially relevant in social and biochem-
ical systems, in which nodes often can be said to come
from two distinct groups. Consider, for instance, scien-
tific collaboration networks: one set of nodes includes all
authors, while the other set of nodes comprises the set

a e-mail: e-sawardecker@northwestern.edu
b e-mail: amaral@northwestern.edu

of papers [12–15]. The edges, therefore, connect authors
to their publications, and the modular structure relates
to the communities of collaborators (for the author node
set) and communities of research topics (for the paper
node set). Similarly, protein-protein interaction networks
reflect the physical binding interactions between “bait”
proteins and “library” proteins [16–19]. Modules, then,
might indicate groups of functionally similar proteins.

Here, we test four different group detection methods in
bipartite networks – modularity maximization via simu-
lated annealing [11,20], modularity maximization via spec-
tral decomposition [21,22], k-clique percolation [8], and
biclique percolation [23] – to ensembles of modular ran-
dom bipartite networks. We use the mutual information
between method-generated partitions and the original par-
tition to systematically quantify the accuracy of the four
group detection methods. We find that the modularity-
maximization methods are the only ones that reliably de-
tect node membership in these bipartite networks.

The organization of this paper is as follows: in Sec-
tion 2 we describe the modular random bipartite networks;
in Section 3 we describe the four different community de-
tection methods for bipartite networks analyzed in this
paper and review the definition of the mutual information
function, which we use to assess method performance. In
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Fig. 1. (Color online) Community detection in bipartite networks. We create a bipartite network with 16 teams and 48 actors
divided equally among 4 “colors”. We set ma = 6 and p = 0.9. The different panels show the network partitions according to the
true colors of actors and teams (top row). The second row shows the results for the simulated annealing modularity maximization
(SA), the third row gives the structure for the BRIM algorithm (BRIM), and the fourth row gives the results for the biclique
percolation (Biclique) method with ka,b = k1,2. The second column shows the corresponding group membership matrices for
the actor structure. The third column shows nodes that were not classified into a group. The BRIM method subdivides two of
the modules while otherwise obtaining the correct result. The biclique percolation method, shown here for ka,b = k1,2, fails to
classify almost half of the actors into a group (shown in grey).

Section 4 we present our results and in Section 5 we dis-
cuss the implications of our work.

2 Model networks

We generate modular random bipartite networks accord-
ing to the model proposed by Guimerà et al. [11]. For
simplicity and consistency with the nomenclature in the
literature, we denote the two sets of nodes in the bipartite
network as the set of actors and the set of teams. Given a
bipartite network, we are interested in identifying groups
(modules) of actors that are strongly connected to each
other through co-participation in many teams.

We start by partitioning N actors onto NM modules
(Fig. 1). We assign the “color” cs to the Ss nodes in mod-
ule s. We then create NT teams. Team a is assigned a
color ca and a team size ma. For each of the ma positions
in team a, we select an actor at random with probability p
from module s such that cs = ca; with probability 1−p we
select an actor at random from modules for which cs "= ca.
We refer to p as the team homogeneity. When p = 1, all
the members of the team have the same color ca.

3 Community detection

We next address the question of detectability of the mem-
bership of individual nodes. Ideally, one wishes to detect
all group memberships from the topology of the network
alone. We consider two methods each within two classes
of group detection algorithms: modularity maximization

via simulated annealing [11,20] and via spectral decompo-
sition [21,22], and clique percolation via k-clique cluster
formation [8] and biclique cluster formation [23].

3.1 Description of the methods

Modularity maximization methods are the current “gold
standard” for group identification in unipartite net-
works [10,24,25]. In these approaches, nodes are classified
into groups that maximize the number of edges within the
group compared to the total number of edges than can
be formed from the same set of nodes [1,2,4,5,7]. Some
of the proposed algorithms, such as spectral decomposi-
tion, can analyze networks comprised of hundreds of thou-
sands of nodes [7]. Due to the fact that spectral decom-
position methods return a local maximum, the identity
of which is dependent on algorithm initialization, they
are frequently less accurate than the slower simulated an-
nealing approach [21]. The bipartite recursively induced
modules (BRIM) method employs a strictly local search
method; the solution found is not guaranteed to be glob-
ally optimal. A different initialization could lead to a solu-
tion with a higher modularity than the solution that was
found. The initialization used for this study was to create
two groups, and then to randomly and evenly divide the
nodes among groups as they were added.

The clique percolation methods are based on the obser-
vation that networks sometimes contain connected cliques
of the same size [8]. In this method, a group comprises
clusters of “adjacent” cliques – two k-cliques are adjacent
if they share k − 1 nodes. It was initially reported that
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k-clique percolation is applicable not only for networks
in which nodes may belong to multiple groups, but also
for bipartite networks when one considers the projection
of the bipartite graph onto one set of nodes, either the
actors or teams [8].

We have recently demonstrated that k-clique percola-
tion often does not assign nodes to any group or assigns
nodes to the incorrect group [25]. For example, sparse net-
works might contain a very small number of cliques with
k > 2, preventing the k-clique method from classifying
any nodes. Moreover, different values of k result in differ-
ent group membership patterns, and it is not clear how
to select the k value that best reveals the network struc-
ture [25].

Nonetheless, we study the k-clique method here be-
cause bipartite networks will, by construction, lead to pro-
jections onto a single set of nodes with large numbers of
cliques. Moreover, the team size suggests a natural value
for k: k ≥ ma.

The biclique percolation method is similar to the k-
clique percolation method in that it constructs commu-
nities from adjacent cliques, but it can operate on the
original set of nodes within the bipartite network [23].
Formally, a biclique, denoted by ka,b, is adjacent to an-
other ka,b biclique if they share at least a − 1 actors and
b − 1 teams [23]. Biclique group assignments are not nec-
essarily symmetric; in other words, the modules obtained
using ka,b are not necessarily the same as those obtained
using kb,a. This difference in structure reflects the differ-
ent connectivity patterns that could exist for actors and
teams.

The limitations of biclique percolation are the same as
for the k-clique percolation method, namely, that there is
no clear criterion for selecting a and b, that different values
of ka,b result in different group membership patterns, and
that sparse networks might contain a very small number
of cliques with ka,b > k2,1.

3.2 Method accuracy

To quantify the similarity between two partitions of nodes,
we calculate the mutual information between the two par-
titions [24]:

MI =

−2
∑

i∈P,j∈Q

Nij ln
(

NijN

NiNj

)

∑

i∈P

Ni ln
(

Ni

N

)
+

∑

j∈Q

Nj ln
(

Nj

N

) , (1)

where P is the set of groups in the first partition, Q is the
set of groups in the second partition, N is the total number
of nodes, Ni is the number of nodes in group gi in the first
partition, Nj is the number of nodes in group gj in the
second partition, and Nij is the number of nodes that are
both in gi and gj . Note that equation (1) is symmetric;
thus, it is an unbiased metric to compare the similarity
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Fig. 2. (Color online) Effect of team homogeneity on algo-
rithm accuracy. Networks are generated with team size ma = 8.
The dotted line is the mutual information for a network in
which there is one community for each actor (team); there-
fore, any partition that results in a mutual information value
above the dotted line reflects meaningful identification of com-
munity structure. (a) Mutual information for actor partitions.
The k-clique percolation method was run on the projection of
the network onto the set of actors. Our results support the idea
that for the k-clique, a natural rule of thumb to select a value of
k for the actor modules is to set k ≥ ma. (b) Mutual informa-
tion for team partitions. Here, the k-clique percolation method
was run on the projection of the network onto the set of teams.
No natural rule of thumb for the k-clique percolation method
presents itself for the analysis of teams. The k-clique percola-
tion method increases in accuracy with increasing clique size,
but it never reaches the accuracy of the modularity maximiza-
tion methods.

of two partitions. If the partitions are identical, MI =
1, whereas if the two partitions are totally uncorrelated,
MI = 0.

4 Results

We compare the performance of the methods for the en-
semble of modular random bipartite networks previously
introduced. To this end, we first determine the accuracy
of each method by calculating the mutual information of
the partitions returned by each method and the known
division of nodes into groups. In addition, we plot the
group membership matrices G, in which the actors are the
rows of the matrix and the modules are the columns [25].
Elements of the group membership matrix are shown in
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Fig. 3. (Color online) Group membership matrices reflect dependence on level of team homogeneity. Each group membership
matrix shown here represents the calculated membership of nodes for networks generated with p = 0.30, 0.50, 0.70, and 0.90, and
with team size ma = 8. The first row shows the network projected on the set of actors, where actors are color coded by group.
The second row shows the results for the simulated annealing modularity maximization (SA), the third row gives the structure
for the BRIM algorithm (BRIM), the fourth row gives the results for the biclique percolation (Biclique) method with ka,b = k2,3,
and the fifth row contains the results from k-clique percolation with k = 10. The k-clique percolation results correspond to the
structure of the projection of network edges on the set of actors as determined by k-clique percolation. As a comparison, the
final row shows the results from running a unipartite simulated annealing modularity maximization on the same projections
(Proj SA). Note the degree to which the modularity maximization methods (SA, BRIM, and Proj SA) outperform the clique
percolation methods.

black if an actor belongs to that module, and are shown
in yellow otherwise.

4.1 Effect of team homogeneity

We studied the accuracy of the four methods as a func-
tion of p for ma = 8 and ma = 14. For ma = 14 the
projected networks were so dense that the k-clique per-
colation method had difficulty detecting all the cliques,
much less the final structure.

Actor modules. As shown in Figure 2a, the SA method
performs well for p > 0.5, while the BRIM method yields
meaningful results for p > 0.6. The biclique method per-
forms adequately only for p > 0.7 and ka,b = k3,2, as does

the k-clique percolation for k = 10. Notably, the clique
percolation methods never reach the level of accuracy ob-
tained with the modularity maximization for the same
range of parameter values.

Because the k-clique percolation method was the
only method applied to the network projection, we ran
a unipartite modularity maximization method (Proj SA)
on the network projection for comparison (Fig. 3, last
row). For large p, we find that the unipartite modularity
maximization is nearly as accurate as the bipartite
modularity maximization methods.

Team modules. The SA and BRIM methods perform
well for p > 0.5 and p > 0.6, respectively. The bi-
clique method begins to yield meaningful partitions for
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Fig. 4. (Color online) Effect of number of teams on algorithm
accuracy. The dotted line is the mutual information for a net-
work in which there is one community for each actor (team);
therefore a partition that results in a mutual information value
above the dotted line reflects meaningful community structure.
(a) Mutual information for actor partitions. (b) Mutual infor-
mation for team partitions. Note that the accuracy of the bi-
clique method decreases as more information–that is, data on
more teams–becomes available.

p > 0.75 and ka,b = k3,2, but never reaches the accu-
racy of the modularity maximization methods. Remark-
ably, the k-clique method works even worse for teams than
for actors, perhaps because team clusters are highly het-
erogeneous (Fig. 2b).

4.2 Effect of number of teams

We next investigated the performance of the community
detection algorithms as a function of NT (Fig. 4). We
considered the case NM = 4, SS = 32 for all s, ma = 14,
and p = 0.5.

Actor modules. For the partition of actors, both the SA
and BRIM methods yield meaningful groups of the ac-
tors for NT = 60, but the SA method outperforms BRIM
for NT < 120. Surprisingly, the accuracy of the biclique
method decreases as the number of teams increases. For
NT = 960, the biclique percolation method is no longer
able to uncover the community structure of the networks.

Team modules. The mutual information for the groups
of teams suggests that the SA method detects meaningful
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Fig. 5. (Color online) Effect of module size homogeneity on
algorithm accuracy. The dotted line is the mutual information
for a network in which there is one community for each actor
(team); therefore a partition that results in a mutual informa-
tion value above the dotted line reflects meaningful community
structure. There are NM = 6 modules per network, and sizes
are determined by h, the module size homogeneity. (a) Mutual
information for actor partitions. (b) Mutual information for
team partitions. Note that the biclique method has difficulty
detecting meaningful actor partitions. The biclique method is
able to yield meaningful team partitions for ka,b = k4,3, al-
though it is not as accurate as the SA or BRIM methods for
h > 0.4.

team structure for networks with NT ≥ 30. The BRIM
method only begins to detect meaningful team structure
for NT = 120, at which point it performs almost as ac-
curately as the SA method. Again, the biclique method
performs poorly, and can only detect some team structure
for NT = 60, 120 for ka,b = k4,2.

4.3 Effect of module size homogeneity

Next, we investigated the accuracy of the three bipartite
community detection algorithms for NM = 6 and for
different values of the module size homogeneity h. The
module size homogeneity was calculated by first ordering
the modules according to size, S1 ≥ S2 ≥ ... ≥ SNM ,
and then taking the ratio of consecutive module sizes:
h = Si+1

Si
< 1. We considered the case NT = 128, ma = 14
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and p = 0.5.

Actor modules. The SA and BRIM methods signif-
icantly outperform the biclique method for the actor
partitions for all h ∈ [0.4, 0.9]. For h % 1, the SA method
is the most accurate for both the set of actors and the
set of teams (Fig. 5). The biclique method only yields
meaningful groups for the set of actors for h > 0.8 and
for ka,b = k5,2.

Team modules. The mutual information for the groups
of teams reveals that the SA and BRIM methods again
return meaningful group structure for all h ∈ [0.4, 0.9].
The biclique method also returns meaningful team struc-
ture for h ∈ [0.4, 0.9] and for ka,b = k4,3. However, the
accuracy of the biclique method is consistently less than
the accuracy of the SA and BRIM methods, for both ac-
tors and teams.

4.4 Effect of heterogeneity of team sizes

Real-world networks are typically inhomogeneous in both
team and module composition. For example, a scientific
paper can have anywhere from one to several hundred
authors [15]. We therefore test the detection ability of
the SA and BRIM methods for the case when there is
a distribution of team sizes within the network. We gen-
erate modular random bipartite networks with NM = 4,
Ss = 32, NT = 128, h = 1.0, and p = 0.5. We draw team
sizes from a geometric distribution with mean team size µ,
which is the discrete counterpart to an exponential distri-
bution [11]. When the team sizes are varied within the net-
work, the SA method more accurately detects the struc-
ture for both actors and teams than the BRIM method
(Fig. 6).

5 Conclusions

Our analysis strongly suggests that modularity maximiza-
tion methods are also the gold standard for community
detection in bipartite networks.

While the biclique and k-clique methods both accu-
rately detect regions of high clustering, these regions are
very localized and do not reliably convey information
about the global organization of the bipartite network.
In addition, their tunable parameters of clique sizes are
not straightforward to interpret, thus selecting the “most”
accurate community structure is only possible when one
knows the correct answer a priori.

Interestingly, the k-clique method better detects the
structure of the projection of the bipartite network than
it detects the structure of the overlapping unipartite net-
works for which it was designed [25]. Our analysis shows
that the k-clique method is most accurate for k = 10,
which is only slightly larger than the team size, ma = 8.
In other words, bipartite networks with uniform team sizes
may have a natural range of k values that better uncover
the underlying structure.
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Fig. 6. (Color online) Effect of heterogeneity of team sizes on
algorithm accuracy. Here, networks are generated with a geo-
metric distribution of team sizes based on the mean team size,
µ. The dotted line is the mutual information for a network in
which there is one community for each actor (team); therefore,
a partition that results in a mutual information value above the
dotted line reflects meaningful community structure. (a) Mu-
tual information for actor partitions. (b) Mutual information
for team partitions. Note that the simulated annealing results
are more accurate than the BRIM method for these networks.

Both modularity maximization methods, SA and
BRIM, display great accuracy in determining the mod-
ular structure under a broad range of conditions. Since
both methods are based on modularity maximization, one
expects that the detection of communities is also affected
by a resolution limit as it is in unipartite graphs [26].
We find, however, that the limit in the detection is a
much weaker condition in the case of bipartite graphs.
Specifically, the limit derived in [26] for unipartite graphs
depends on the number of links, while the analogous limit
derived for the SA approach to bipartite networks depends
instead on the number of teams. The greatest advantage
of BRIM over SA is speed. The SA method is too time
consuming to allow the study of networks with NT > 400,
whereas BRIM can quickly determine the modular struc-
ture of networks with NT & 100. A weakness of the BRIM
method is its sensitivity to initialization specifications,
such as the number of nodes it randomly assigns to each
module at the beginning of each iteration. Moreover, the
BRIM method is not as accurate as the SA method for
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more challenging cases, such as when networks are gener-
ated with few teams or a wide distribution of team sizes.
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