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Abstract

A key question in human gut microbiome research is what are the robust structural patterns underlying its taxonomic composition.
Herein, we use whole metagenomic datasets from healthy human guts to show that such robust patterns do exist, albeit not in the
conventional enterotype sense. We first introduce the concept of mixed-membership enterotypes using a network inference approach
based on stochastic block models. We find that gut microbiomes across a group of people (hosts) display a nested structure, which
has been observed in a number of ecological systems. This finding led us to designate distinct ecological roles to both microbes
and hosts: generalists and specialists. Specifically, generalist hosts have microbiomes with most microbial species, while specialist
hosts only have generalist microbes. Moreover, specialist microbes are only present in generalist hosts. From the nested structure of
microbial taxonomies, we show that these ecological roles of microbes are generally conserved across datasets. Our results show that
the taxonomic composition of healthy human gut microbiomes is associated with robustly structured combinations of generalist and
specialist species.
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Significance Statement:

Is the gut microbiome a random ecosystem or does it have an internal structure? We show that gut microbial communities in
healthy individuals have a well-defined and robust ecological order consisting of gradually increasing degrees of specialization:
while some microbes are found in the majority of humans, others are very specific to some people. Similarly, hosts have varying
degrees of microbial diversity. Our findings describe the principles of how healthy human gut microbiomes are associated with
robustly structured combinations of generalist and specialist species.

Introduction
Among the different communities of microbes that live in sym-
biosis inside and on the human body, the gut microbiome has re-
ceived the most attention by far (1–3). During the last decade, gut
microbiome dysbiosis was found to be linked to a variety of dis-
eases related to the gut (1, 4–6), and even to those not overtly gut-
related, including fertility disruption (7), neurological pathologies
(8), or atopy and asthma in infants (9–11). Recent studies continue
to show that the gut microbiome plays an important role in health
and disease, such as influencing immune response in infants (11)
and regulating inflammation (12).

The need to better understand why the gut microbiome is such
an important component in human health has sent scientists
on a quest to discover “healthy” gut microbiome compositions.
Such an understanding is critical for the design of better ther-
apies based on fecal microbiota transplantation (FMT) (13, 14)
or gut microbiome-targeting drug treatments (3). Despite recent
progress, the scientific community has yet to reach a consen-
sus that pinpoints the essential microbial components for our

well-being. By and large, this has been due to the large variabil-
ity observed in gut microbiome composition and that only few
species are present in the majority of samples (15–18). This can
be partially explained by an ecological perspective, in which the
occupation of niches determines the governing functions of the
ecological system (15). From birth, the microbial niches of the
gastrointestinal tract are affected by many dietary and environ-
mental factors, resulting in much of the observed variability (2,
19, 20).

Despite their known heterogeneity in taxonomic composition
from person to person, gut microbiomes from healthy subjects
are able to perform nearly the same critical biological functions
(21–23); this suggests that there must be recurrent patterns in the
structure of the human gut microbiome that are linked to the
healthy phenotype. An approach to characterize and classify such
patterns is the identification of so-called enterotypes, defined by
specific traits of microbiome composition profiles that are com-
mon to particular groups of hosts. However, despite some consis-
tencies in the most abundant species, which suggests that there
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Table 1. Description of healthy human gut microbiome datasets used in this study.

Author Study title
No. of microbial

species
No. of healthy

subjects

W. Liu et al. Unique features of ethnic mongolian gut microbiome revealed by
metagenomic analysis (37)

128 107

N. Qin et al. Alterations of the human gut microbiome in liver cirrhosis (38) 137 92
M. Schirmer et al. Linking the human gut microbiome to inflammatory cytokine

production capacity (39)
134 467

C. Huttenhower et al.,
J. Lloyd-Price et al.

Structure, function and diversity of the healthy human
microbiome (16), Strains, functions and dynamics in the

expanded human microbiome project (40)

118 222

D. Zeevi et al. Personalized nutrition by prediction of glycemic responses (41) 144 883

are taxa more preferred than others, enterotypes have not been
found to be convincingly robust across, for example, geographi-
cally distinct populations (23). As a result, the search for robust,
rigid classification criteria of microbiome compositions (such as
the original concept of enterotypes) has been somewhat aban-
doned in favor of more nuanced studies aiming to understand the
taxonomic and functional landscape of the gut microbiome and
its connection to various pathologies (23).

The fundamental assumption behind the definition of en-
terotypes is that there are groups of hosts that have similar mi-
crobe abundance profiles. On the other hand, there is a class of
generative models called bipartite stochastic block models (SBMs)
(24), which (for microbiome research purposes) explicitly assume
the existence of groups of hosts and groups of microbes that are
associated according to similarities in the microbe abundance
profiles. These statistical models can be seen, in practice, as a bi-
clustering technique that allows simultaneous clustering of both
microbes and hosts. Additionally, they are easily interpretable and
are amenable to rigorous and unbiased model selection tools to
identify optimal groupings of hosts and microbes (25). In fact,
SBMs have been successfully used in the complex networks litera-
ture to characterize the large-scale structure of complex networks
and to make predictions of unobserved data (26–28).

In our study, we represent gut microbe abundance profiles from
a cohort of healthy people as a network and follow a Bayesian
SBM approach to show: first, that the SBMs are able to predict
unobserved microbe abundances better than agglomerative hier-
archical clustering methods; and second, that there exists a ro-
bust organization structure in healthy gut microbiomes based on
taxonomic composition. Our analysis reveals that microbe abun-
dances display the same nested structure that was first observed
in faunas of fragmented habitats and archipelagos (29), and later
discovered in a wide range of ecological systems (30–33).

In this nested structure of gut microbiomes, we find that a
few groups of hosts have significant abundances of a large num-
ber of microbial groups (generalist hosts), while other groups of
hosts have very few microbial groups of significant abundance
(specialist hosts). Analogously, some microbial groups are present
in nearly all groups of hosts (generalist microbial groups), while
other microbial groups are present in just a few groups of hosts
(specialist microbial groups).

Our results suggest that the taxonomic composition of healthy
human gut microbiomes follow a nested structure, which are
not only similar to those found in other ecological networks
throughout nature, but also predictive of unobserved abundances.
By showing that there are generalist hosts as well as specialist
hosts, and that there is a varying gradient of such ecological roles
across different hosts (in contrast to discrete enterotypes), we

mathematically formulate a new description of how gut micro-
biomes organize within a small population.

Materials and Methods
Downloading and quality control of sequenced
reads
The current investigation uses publicly available human gut mi-
crobiome datasets from five published studies (Table 1). Of note,
for studies whose cohort includes microbiome samples from both
cases (disease) and controls (healthy), only samples from the con-
trols were considered. Raw sequence files (.fastq) were down-
loaded from the NCBI Sequence Read Archive (SRA) and European
Nucleotide Archive (ENA) databases. Sequence reads were pro-
cessed with the KneadData quality-control pipeline, which uses
Trimmomatic v0.36 and Bowtie2 v0.1 for removal of low-quality
read bases and human reads, respectively. Trimmomatic v0.36
was run with parameters SLIDINGWINDOW:4:30, and the Phred
quality score threshold was set at “<30”. Illumina adapter se-
quences were removed, and trimmed nonhuman reads shorter
than 60 bp in nucleotide length were discarded. Potential hu-
man contamination was filtered by removing reads that aligned to
the human genome (reference genome hg19). Furthermore, stool
metagenome samples of low read count after quality filtration
(< 1 M reads) were excluded from our analysis.

Species-level taxonomic profiling
Taxonomic profiling was done using the MetaPhlAn2 v2.7.0
phylogenetic clade identification pipeline (34) using default
parameters. Briefly, MetaPhlAn2 classifies metagenomic reads
to taxonomies based on a database of clade-specific marker
genes derived from ≈17,000 microbial genomes (corresponding
to ≈13,500 bacterial and archaeal, ≈3,500 viral, and ≈110 eu-
karyotic species). After taxonomic profiling, the following stool
metagenome samples were discarded from our analysis: (i) sam-
ples composed of more than 5% unclassified taxonomies; and (ii)
phenotypic outliers according to a dissimilarity measure. More
specifically, Bray–Curtis distances were calculated between each
sample of a particular phenotype and a hypothetical sample
in which the species’ abundances were taken from the medi-
ans across samples. A sample was considered as an outlier, and
thereby removed from further analysis, when its dissimilarity ex-
ceeded the upper and inner fence (i.e., > 1.5 times outside of the
interquartile range above the upper quartile and below the lower
quartile) of all dissimilarities. Finally, species of viral origin, those
of either unclassified or unknown clades, and those of low preva-
lence (i.e., observed in < 1% of the samples in each study), were
excluded from our study.
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Fig. 1. SBMs provide a theoretical framework to model microbe abundance patterns. SBMs assume the existence of groups of hosts and groups of
microbes. Here, we illustrate the main concept of SBMs in the context of microbe abundance matrix modeling and mixed-membership enterotype
identification. (a) Probabilistic matrix of abundances. Each row corresponds to a group of hosts and each column to a group of microbes. Hosts in the
same group display a similar microbe abundance pattern (row); microbes in the same group display similar relative abundance patterns across groups
of hosts (column). For simplicity, we illustrate the case in which only two possible relative abundances are allowed: non-negligible (relative abundance
≥ 10−4) and negligible (relative abundance < 10−4). Colors represent the probability that a group of microbes is present in a group of hosts with
non-negligible relative abundances (dark blue, p(non-negligible) → 1; light blue, p(non-negligible) → 0). (b) Relationship between SBMs and
enterotypes. In single-membership SBMs, each host belongs to a host group exclusively (hot pink in the example), so that the corresponding (hot pink)
row of the probability abundance matrix (in (a)) indicates the most likely abundances of each microbe group in hosts of that host group. Therefore,
single-membership SBMs are equivalent to conventional enterotypes. In mixed-membership SBMs, each host belongs to a mixture of host groups with
a certain probability given by her membership vector. The enterotype of each host is then a weighted combination of underlying enterotypes in the
probabilistic matrix of abundances in (a) as depicted in the weighted sum of matrix rows. The latter model is more expressive and is better suited to
model complex data (28, 35).

Discretization of microbiome datasets
Each gut microbiome dataset of a study can be represented as
a species matrix M, wherein columns represent gut microbiome
samples of the hosts and rows correspond to microbial species.
Each element Mhm corresponds to the relative abundance (i.e., pro-
portion) of microbial species m in the sample of host h. Impor-
tantly, because our interest was to find the leading patterns in mi-
crobiome composition, we only considered as nonzero the relative
abundances that were larger than 10−4. In addition to matrices of
species-level abundances, we considered abundance matrices of
phylum, class, order, family, and genus taxonomic ranks.

We model species abundance matrices as bipartite multilink
networks, i.e. networks with two classes of nodes (hosts and mi-
crobes) in which edges run between nodes of different classes and
edges are of different types. Here, edge weights correspond to rel-
ative abundances of microbes in each host. Since relative abun-
dances are continuous and our models require a discrete number
of edge types, we need to discretize the relative abundances and
then define a new species matrix M̂ in which entries M̂hm are cate-
gorical. We choose to discretize the microbe abundances accord-
ing to their order of magnitude. In all five datasets, abundances
ranged from 10−4 to 10−1, and so we considered three types of
edges (categorical abundances): null or negligible, M̂hm = I if Mmh

< 10−4; low, M̂hm = II if 10−4 ≤ Mmh ≤ 10−3); and high, M̂hm = III if
Mmh > 10−3. Despite the known limitations associated with dis-
cretizing data, representing the abundance data by a small set of
classes provides a simpler and more straightforward interpreta-
tion of “microbial abundance” without significantly altering the
inherent distribution of the compositional data.

SBMs for microbe abundance matrix modeling
and enterotype identification
We define a bipartite network with categorical edges whose
weights are defined by the microbial relative abundances. This
bipartite network is the starting point toward our overall aim,

which is to find underlying groups of both microbes and hosts
(essentially two classes of nodes) that together best explain (data-
grounded) host–microbiome relationships.

Our bipartite SBMs assume that hosts can be classified into
groups that connect similarly to the same microbes, that is, that
have the same relative abundances of the same microbes. At the
same time, we assume that microbes can also be classified into
groups that have similar relative abundances in similar groups of
hosts. Furthermore, to each host and microbe group pairs (h, m),
we assign a set of probabilities phm = {pI

hm, pII
hm, pIII

hm}, which corre-
spond to the probability that a host in group h has negligible, low,
or high relative abundances of microbes in group m. Note that in
conventional enterotype identification approaches, each group of
hosts would define a so-called enterotype.

If there are L groups of microbes, then each host group h is as-
signed a vector of sets of probabilities for all the L microbe groups,
ph = (ph1, ph2,..., phM). We call ph enterotype, since the vector of
probability sets determines the most likely set of microbe abun-
dances for those hosts in group h in the same way that conven-
tional enterotypes do (Fig. 1).

Mixed-membership stochastic block models for enterotype
modeling and identification
To increase the expressibility of our model, we consider a bipartite
mixed-membership stochastic block models (MMSBMs) (28, 35) in
which we allow for real hosts and microbes to belong to all of the
groups with a finite probability (Fig. 1). In this case, the groups are
no longer associated to a group of hosts or microbes and, there-
fore, they become latent groups, that is underlying groups that we
cannot directly measure. Each latent group of hosts is then char-
acterized by its corresponding latent enterotype. Therefore, a pos-
sible interpretation is that the observed relative microbe abun-
dances for hosts are the result of mixing underlying enterotypes.

Formally, we model the multiedge bipartite network defined by
categorical species matrices M̂ as a bipartite MMSBM. MMSBMs
assume there exist K latent groups of hosts and L latent groups
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of microbes. Each host h belongs to host group k with probability
θhk and each microbe m belongs to group l with probability ηml.
These probabilities are encoded in θh and ηm, the so-called mixed-
membership vectors for host h and microbe m:

θh = (θh1, θh2, . . . , θhK ) ηm = (ηm1, ηm2, . . . , ηmL ) . (1)

Because θh and ηm are probability vectors, they are subject to
the normalization condition that all probabilities have to add
to one,

K∑
k=1

θhk = 1
L∑

l=1

ηml = 1 . (2)

Note that if single membership SBMs are the best description
for observed abundance matrices, then we will find that hosts
have a large probability of belonging to only one group.

If A := {I, II, III} is the set of possible values each edge can take,
MMSBMs further assume that the probability that microbes in
group m have relative abundance a ∈ A in hosts of group h is p(a)k�.
Since for each pair of groups (k, �) each abundance can only take
one value, these probabilities are also subject to the normalization
condition

∑
a∈A

p(a)k� = 1 ∀(k, �). (3)

Note that p is a tensor of dimensions K × L × A, with A ≡ |A|.
Each ’row’ k in this tensor defines the latent enterotype for group
k. If there are only two abundance types A = 2, and because of the
normalization condition we only need one matrix p of dimensions
K × L to define the model as we illustrate in Fig. 1.

Given the mixed-membership vectors θ and η and the proba-
bility tensor p, the MMSBM defines the probability that microbe m
has abundance of type a in host h as

Pr[M̂mh = a] =
∑
k,�

θhk pk�(a) ηm�. (4)

Inference for model parameter estimation
Given a categorical species matrix M̂O of observed microbial abun-
dances of M microbial species in P hosts, the MMSBMs assumes
that each relative abundance observation is independent from the
others. Therefore, the probability of observing M̂O according to the
model is given by the following likelihood function,

p(M̂O|MMSBM) = p(M̂O|θ, η, p) =
∏

(h,m)∈M̂O

Pr[M̂O
hm]. (5)

Note that the product runs over all observed abundances. If some
abundances are missing (i.e. not observed), then these terms do
not appear in the likelihood.

If we assume that we have flat priors over model parameters,
then we can obtain the set of parameters (θ∗, η∗, p∗ ) that best de-
scribe the observed data by maximizing the likelihood

{θ∗, η∗, p∗} = arg max
{θ, η, p}

{p (M̂o|θ, η, p)}. (6)

Equations for the Expectation Maximization algorithm
We follow a variational approach to obtain iterative equations for
the model parameters and use an Expectation Maximization algo-
rithm to obtain estimates for {θ∗, η∗, p∗} (28). Specifically, we find
for the model parameters θ, η, p iterative equations that depend
on auxiliary probability distributions as it is usual in Expectation
Maximization approaches.

In particular, we find the following equations (28):

θhk = 1
dh

[ ∑
a∈{I,II,III}

∑
m∈∂a

h

∑
�

ωhm(k, �)

]
, (7)

ηm� = 1
dm

[ ∑
a∈{I,II,III}

∑
h∈∂a

m

∑
k

ωhm(k, �)

]
, (8)

pk�(a) =
∑

[(h,m)∈Ro|ahm=a] ωhm(k, �)∑
(h′,m′ )∈Ro ωh′m′ (k, �)

, (9)

where ∂a
m = {h|M̂mh = a}, a ∈ {I, II, III}, and ∂a

h = {m|M̂mh = a}, a ∈
{I, II, III}. dh and dm are the degrees of host h and microbe m in
the bipartite representation of M̂, that is, the number of microbes
with measured relative abundance reported for host h, and the to-
tal number of hosts for which the relative abundance of microbe
m has been reported, respectively.

In the expressions above, ωpm(k, �) is an auxiliary distribution
that appears in the variational approach used to maximize like-
lihood functions using Expectation Maximization algorithms (28).
This distribution represents the probability that host h having the
microbe m with relative abundance ahm is due to h and m belong-
ing to latent groups k and �, that is

ωhm(k, l) = θhkηm� pk,�(a)∑
k′�′ θhk′ ηm�′ pk′�′ (a)

. (10)

Selection of K and L
We assume that the best model is the most predictive one. We,
therefore, look for the combination of model parameters K and
L that maximizes the predictive accuracy (see section on metrics
and Figure S1 in Supplementary Material). In order to be consis-
tent, we test our results on the combination of all five datasets.
We find that the most predictive combination of parameters cor-
responds to K = 10, L = 20, that is 10 latent enterotypes and 20
latent groups of microbes (see Figure S2, Supplementary Material)

Host-specific cross-validation experiments
For each microbe abundance profile of host h, we randomized the
order of abundances and partitioned the profile into five equally
sized groups (folds) for cross-validation. In each of the cross-
validation experiments for host h, we used as the training data
for the model (cluster identification or model parameter estima-
tion) all other microbe abundance profiles (columns of the species
matrix M) that do not correspond to host h along with four of the
five-folds from host h. After model training, we used the (param-
eter) fitted model to make predictions on the abundances of the
fold held out during training (see Supplementary Methods for fur-
ther details). We performed this process for all five folds in each
and every host.

Predictions in cross-validation experiments
SBM approach

For each missing microbial abundance, we have three different
scores associated to the probability that host h has microbe m with
null, low or high abundance: Pr[ahm = I], Pr[ahm = II], and Pr[ahm =
III]. Our estimation in each case is given by the maximum of these
probabilities, i.e.

Prediction = max
x

{Pr[ahm = x]} . (11)

We, thus look for the membership vectors θ and η that yield the
highest predictive power of unobserved abundances.
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Conventional approach

The agglomerative clustering pipeline we consider rigorously se-
lects the best out of 90 possible clusterings. For each host h and
each fold, we select the best clustering to estimate unobserved
abundances. We first consider all the hosts that belong to the
same cluster as host h. Then, for each missing microbe mi, we esti-
mate its relative abundance as the most likely abundance of that
microbe in the other hosts within the cluster.

Similarity distance between membership vectors
of microbes according to taxonomic classification
Suppose we have a taxonomic level T with t1, …, tq taxa. For each
taxa tk, we take all possible pairs of microbes’ membership vectors
(ηi

k, η
j
k ), such that i, j ∈ tk, and i �= j and compute the Euclidean

distance dij(tk) between them. Note that the smaller the distance,
the more similar the membership vectors of the two microbes.
We repeat this process for all n taxa and then compute the mean
intrataxa distance as

〈dintra〉 = 1
NP

intra

q∑
k=1

∑
i �= j

di j (tk ) , (12)

where NP
intra is the total number of pairs of microbes from the same

taxa. Next, we measure the mean intertaxa distance. To that end,
we take all possible pairs of membership vectors from different
taxa (ηi

k, η
j
k′ ), such that k �= k

′
and measure the Euclidean distances

between them. We repeat this process for all pairs of different taxa
and calculate the mean:

〈dinter〉 = 1
NP

inter

q∑
k �=k′

∑
i, j

di j (tk, tk′ ) . (13)

Finally, we take the log of the ratio intra/inter distances
log (〈dintra〉/〈dinter〉) for all five taxonomic levels.

Assessment of nestedness
In order to measure the nestedness of a binary matrix in which
elements are either 1s or 0s, we use the metric presented in (36):

n =
∑

i< j q(h)
i j + ∑

i< j q(m)
i j∑

i< j min(q(h)
i , q(h)

j ) + ∑
i< j min(q(m)

i , q(m)
j )

, (14)

where qij represents the number of shared interactions between
rows/columns i and j and qi is the number of interactions
of row/colum i. h and m represent rows (hosts) and mi-
crobes(columns), respectively. The numerical value of the nest-
edness n ranges from 0 to 1.

Genome sizes and protein-coding gene counts
for microbial species
Genome sizes and protein coding genes for all strains avail-
able in NCBI were retrieved for the species found to be present
in the five datasets mentioned above. For each species, median
genome size and median count of protein-coding genes were cal-
culated from all of its strains (see Tables S1-3, Supplementary
Material).

Results
SBMs are predictive of microbe abundances and
can identify biologically relevant groups
The most common approaches for enterotype identification rely
on clustering heuristics to identify groups (clusters) of hosts who
share commonalities in gut microbiomes (23, 42, 43) (the excep-
tion being approaches based on multinomial mixture models (44,

45)). In contrast, we use SBMs as generative models to identify
group patterns in microbe abundance profiles. SBMs first assume
that there are distinct groups of hosts and groups of microbes, and
that the probability that a host has a significant abundance of a
certain microbe depends exclusively on the groups to which the
host and the microbe belong (24). These generative models have
only a few underlying assumptions (i.e., that there are groups of
microbes and groups of hosts, and that links connecting a microbe
group to a host group are independent of other links), and can
be used to find the most plausible group memberships of hosts
and of microbes that best describe/compress a given dataset.
The most plausible group memberships derived from observable
data are, by definition, also the most predictive of unobserved
data.

SBMs are fully defined by the group memberships of hosts and
microbes; and probability matrices p(a), whose elements pk�(a)
determine the probability that microbes of group � are present
with an abundance of a in hosts of group k. In this model, each
row (for k) in the matrices p(a) describes the most likely abun-
dances of each group of microbes in host group k, and there-
fore, is akin to what has been typically referred to as enterotypes
(Fig. 1).

The same concept can be further generalized to allow hosts and
microbes to simultaneously belong to multiple groups at vary-
ing probabilities (which increases the expressiveness of the model
(28, 35)); and this is the type of SBM we consider in our analy-
sis (see Fig. 1 and Methods for a formal definition of the model).
SBMs have the additional advantage that they are amenable to
efficient and well-grounded inference methods that can be used
to optimally divide hosts and microbes into groups (27, 28) (see
Methods).

To show how well SBMs can identify group patterns in microbe
abundance matrices compared to previously demonstrated clus-
tering approaches (e.g. for enterotype detection), we assess each
model’s ability to predict relative abundances of unobserved mi-
crobes using five published gut microbiome datasets (Table 1).
To this end, we first discretize the relative abundances r (which
span a simplex distribution) into three discrete categorical bins:
negligible (r < 10−4), low (10−4 ≤ r < 10−3), and high (r ≥ 10−3).
The merit of this discretization technique is that it simplifies our
prediction task into a classification problem. Then, we perform
a host-specific five-fold cross-validation for all hosts within each
dataset. Here, our main goal is to predict abundance categories of
unobserved microbes in individual hosts as a way to test whether
it would be possible to reconstruct the entirety of partially ob-
served microbial abundance profiles. More specifically, we devised
a cross-validation strategy that splits a profile of a given host into
five equally sized partitions. For each split, we train a model with
80% (four of five partitions) of the microbe abundance profile of
that host and with the entire abundance profiles of the remain-
ing hosts; the held out 20% of the profile (from the same host)
was used as the test set to evaluate predictive performance. The
average prediction accuracy found in this manner provides us a
means to objectively and quantitatively compare the robustness
of group patterns identified by the SBM and other clustering ap-
proaches (25, 26, 46).

To compare against the predictive performance of the SBM ap-
proach, we use an agglomerative hierarchical clustering method
described in (42), as such methods are generally regarded to be
more reliable than divisive clustering (e.g., k-means) in providing
accurate prediction models. Of note, the clustering method gener-
ates 90 different clusterings and then selects the best one based
on multiple metrics. In our prediction experiments, we clearly see
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Fig. 2. SBMs accurately predict and describe microbe abundances. (a) Predictive performance in host-specific cross-validation experiments. We
compare the predictive power of SBMs and conventional approaches for enterotype identification using a cross-validation strategy centered on
individual hosts (Methods). For each of the five different datasets indicated by the last name of the first author (number of samples), we compute the
average log-ratio (over multiple folds) of the performance in predicting unobserved microbial abundances by SBMs to that by the conventional
clustering approach (X: accuracy, precision, and recall—see Supplementary Material for definitions). Note that, in our prediction experiments of
unobserved microbe abundances, the performance across different hosts is highly variable (see Figure S3, Supplementary Material): accuracy values
are in the range of [0.5, 1], while recall and precision values have a wider range of [0.25, 1]. We compute average log-ratios, which allows us to measure
performance differences between methods for the same prediction experiment. Note that a log-ratio equal to zero means that both methods have the
same performance; a log-ratio above zero means that the SBM performs better than conventional heuristic approaches, and vice versa. Bars represent
the standard error of the mean. (b) Similarity in microbe abundances across taxonomic ranks. For each of the five datasets, we compute the average
distance between group membership vectors of microbes in the same taxa (’intra’ taxonomic ranks), and compare it to the average distance between
membership vectors of microbes in different taxa (’inter’ taxonomic ranks; Methods and Table S1, Supplementary Material). Log-ratios smaller than
zero indicate that the average intrataxa distance is smaller than the average intertaxa distance, that is, that membership vectors of microbes within a
taxon are more similar than membership vectors of microbes across different taxa. Bars represent the standard error of the mean.

that the predictive performance of the SBM approach is system-
atically higher than that of the conventional clustering approach
(Fig. 2a). Hence, we can conclude that SBMs are a superior predic-
tive model.

Our analysis also shows that the majority of hosts and mi-
crobes are predictable; that is, that we are able to correctly pre-
dict unobserved abundances of microbes across many hosts,
and also unobserved abundances in specific hosts for many mi-
crobes. Nonetheless, we also observe some variability in host
and microbe predictability—some hosts and microbes have very
strong patterns and are, therefore, more predictable than oth-
ers (Figures S4–S8, Supplementary Material). Further analysis of
the SBM groups reveals that the similarity of group member-
ships increases as we go down the taxonomic rank hierarchy
(Fig. 2b). In particular, we find that the genus taxonomy has the
largest intrataxon to intertaxon similarity ratio (Fig. 2b), sug-
gesting that SBMs can infer biologically relevant groups in gut
microbiomes.

SBMs reveal the nested organization of microbe
abundances in the human gut microbiome
Our results show that SBMs enable us to reasonably predict un-
observed microbe abundances, indicating that our approach cor-
rectly models relationships between hosts and microbes in the
five gut microbiome datasets. The questions we explore next are:
What are these patterns? Are they consistent across datasets? Do
these patterns reveal universal traits in the organization of gut
microbiome ecologies? To these ends, we analyze the p matrices,
which describe the abundances of groups of microbes in groups
of hosts, for each of the five datasets.

If we rank-order host groups according to their number of mi-
crobe groups of non-negligible relative abundances r (r ≥ 10−4),
and rank-order microbe groups in an analogous manner, we find

that biclustering p matrices display, what is called in ecology, a
nested organization (29, 30, 32, 48) (Fig. 3; see Methods and Fig-
ure S9 (Supplementary Material) for an illustration). Such a nested
organization entails that we can observe generalist and special-
ist groups of hosts and microbes. Generalist host groups have
non-negligible abundances of the majority of microbes groups,
while specialist host groups have non-negligible abundances of
very few microbe groups. Importantly, microbe groups present
in specialist hosts are subsets of those observed in generalist
hosts; and thereby the nested structure. Moreover, microbe groups
display the same behavior: generalist microbe groups have non-
negligible abundances in the majority of host groups, while spe-
cialist microbe groups have non-negligible abundances in a few
host groups. The nested structure entails that specialist hosts
have non-negligible abundances of mainly generalist microbe
groups, while specialist microbe groups are only present in gen-
eralist hosts (see Figure S9, Supplementary Material). Note that
in our analysis, generalists and specialists are defined purely
based on what we observe in the data, i.e. their positions within
the nested hierarchy of the SBM p matrices. Therefore, these
terms are not defined using the definition of generalist in other
contexts.

Strikingly, we find that the nested organization in the SBM p
matrices is also present in the original host–microbe abundance
matrices (Fig. 4). That is, if we order hosts and microbial species
by their degree (the number of non-negligible abundances in their
corresponding rows and columns), the resulting ordered relative
abundance matrices also display a nested structure (Fig. 4), al-
lowing us to again identify generalists and specialists. Impor-
tantly, our results do not depend on the threshold we use to de-
fine non-negligible and negligible relative abundances (see Fig-
ure S10, Supplementary Material); even after changing the relative
abundance threshold to below what was originally considered as
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Fig. 3. SBMs reveal underlying nested organization of microbe abundance matrices. ((a)–(e)) Nestedness of SBM p matrices for all datasets: (a) W. Liu
et al., (b) N. Qin et al., (c) M. Schirmer et al., (d) C. Huttenhower et al. and J. Lloyd-Price et al., and (e) D. Zeevi et al. Top row: heatmaps represent SBM p
matrices. Rows correspond to host groups, and columns correspond to microbe groups. As in ecological studies (see for instance (47)), we consider two
categories of microbe relative abundance r: negligible (0, for r < 10−4) and non-negligible (1, for r ≥ 10−4), and analyze the corresponding SBM p
matrices. Furthermore, because in this case the values pk� (a = 1) matrices are very close to either 0 or 1, we round their values. Note that because our
optimal choice of parameters is K = 10 groups of hosts and L = 20 groups of microbes, p matrices are 10 × 20 (see Methods). Dark blue matrix elements
represent the presence of a microbe group in a host group with non-negligible abundance. Rows and columns are ordered according to their count of
non-negligible abundances to show the nested organization (see Figure S9, Supplementary Material). The inset in each plot shows the numerical value
of the nestedness (see Methods). Bottom row: significance of nestedness for the corresponding heatmap shown in the top row. For each dataset, we
show the distribution of nestedness values obtained for 1,000 randomizations of the p matrix. For this, we randomize each p matrix while preserving
the average number of connections between groups of hosts and microbes. The black solid line represents the nestedness value of the observed
(actual) p matrix.

Fig. 4. Microbe abundance matrices display a nested organization of hosts and microbes ((a)–(e)) Nestedness of microbe abundance matrices from all
of the datasets considered: (a) W. Liu et al., (b) N. Qin et al., (c) M. Schirmer et al., (d) C. Huttenhower et al. and J. Lloyd-Price et al., and (e) D. Zeevi et al. Top
row: categorical matrices with two categories of microbial species relative abundance r: negligible (0, for r < 10−4, white) and non-negligible (1, for r ≥
10−4, blue). Rows represent individual hosts, and columns represent individual microbial species. Microbial species and hosts have been ordered
according to the number of non-negligible abundances in their corresponding columns and rows, revealing a nested pattern (see Figure S9,
Supplementary Material) as previously seen for the host and microbe groups. The inset in each plot shows the numerical value of the nestedness (see
Methods). The bottom plots show the nestedness of 1,000 randomizations of the datasets. Black solid lines represent the observed (actual) nestedness
value in the host-microbe abundance matrices above. Randomizations preserve the average number of connections between hosts and microbes.

negligible/non-negligible, nested hierarchies in the microbe abun-
dance matrices are still observed.

Ecological roles of microbial species are robust
In ecology, generalist species are considered to have a wide di-
etary breadth (i.e. species that can survive from a variety of food
resources) and are less affected by environmental perturbations
(49), whereas specialists have a narrower dietary breadth and can
exhibit a competitive fitness advantage over generalist species
within the confines of their habitat (50, 51). We now investigate
whether microbial species in the gut can play the same roles.
Indeed, we find that extreme roles (i.e. extreme generalists and

specialists) are well conserved—generalist and specialist species
play similar ecological roles in all datasets (Fig. 5a). Specifically,
we find that generalist species concentrate in the Clostridiales and
Bacteroidales orders (Firmicutes and Bacteroidetes phylum, respec-
tively; see Tables S1 and S2, Supplementary Material), which is
coherent with what enterotype identification studies have found
to drive enterotype formation (23). Many specialist species, such
as Anaerotruncus colihominis or Cenarchaeum symbiosum, are also
well-conserved across datasets. A large part of these conserved
specialist species belong to the Firmicutes phylum, including many
in the Clostridiales order (Tables S1 and S2, Supplementary Mate-
rial).
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Fig. 5. Ecological roles of microbial species are robust but not related to genome size or number of protein-coding genes. (a) Generalist and specialist
roles are conserved across datasets. To every microbial species in a nested relative abundance matrix (Fig. 4), we assign a rank equal to the position of
the column occupied by that microbial species. Low rankings correspond to generalist species, while high rankings correspond to specialist species
(see Table S2 (Supplementary Material) for normalized ranks of each species in each dataset). For each microbe present in at least four of our datasets,
we compute the mean normalized rank in the ordered abundance matrices in Fig. 4 and the standard error of the mean normalized rank. (We
normalize the rankings to control for the different number of microbial species in each dataset.) The standard error tends to be smaller for species
with low (generalists) and high (specialists) normalized rank, thus showing that generalist and specialized microbial species are conserved across
datasets. In fact, the variance in normalized ranks across datasets is small for the vast majority of species, which implies that microbes tend to occupy
the same position within the nested hierarchy. The line is a quadratic fit to the data and serves to guide the eye. (b)–(f) Relationship between genome
size (top) and protein-coding gene count (bottom) with respect to the rank of a microbial species (see Methods and Tables S2 and S3, Supplementary
Material). At the top of each panel, we show Spearman’s ρ and its corresponding P-value. There is no general trend in the datasets (except for the
smallest dataset, panel (c)). This indicates that generalist and specialist species in nested matrices do not have obvious differences in genome size or
the number of protein-coding genes. Study datasets: (b) Liu et al.; (c) Qin et al.; (d) Schirmer et al.; (e) Huttenhower et al. and J. Lloyd-Price et al.; and (f)
Zeevi et al.. Points in the scatter-plots indicate individual microbiome samples.

To investigate whether the ecological role of microbial species
in the nested hierarchy (i.e. generalists and specialists) could be
connected to their potential functional capacity, we looked at the
relationship between genome sizes (and also number of protein-
coding genes) of microbes and the ranks of microbes in the rank-
ordered abundance matrices in Fig. 4. Here, low and high rank
correspond to generalist and specialist microbes, respectively. We
find no robust relationship between genome size (Fig. 5 b–f top
row) and ecological role, or between the number of protein-coding
genes and ecological role (Fig. 5 b–f bottom row; see Figure S11,
Supplementary Material). This suggests that the ecological role
microbes play in a nested organization may be independent of the
range of functions a given species could potentially perform, but
rather related to the occupation of the specific habitat.

Generalist and specialist hosts show varying gut
microbiome diversity
Island biogeography studies show that a consequence of the
nested structure in fragmented habitats and archipelagos is wide
disparities in species richness across habitats (29, 48). For individ-
ual hosts, microbiome composition is often quantified in terms
of a single alpha-diversity index (52). These diversity indicators
have often been regarded as a possible indicator of gut health—
the higher the diversity index, the healthier the host (3). Our re-
sults show that, within the nested organization of gut microbiome
datasets, there is a significant correlation between the host’s rank
(occupied row number) in the rank-ordered nested abundance
matrix in Fig. 4 and that host’s Shannon diversity index. More
specifically, generalist hosts have a higher diversity than special-
ist hosts (Fig. 6), confirming our earlier finding that generalists
hosts provide a habitat for a wider range of gut microbes. In all,
we conclude that ecological nestedness, which has been reported
in past works in macroecology, extends to the human gut micro-
biota. Further examinations into this property could lead to new

discoveries regarding the ecological assembly of the human gut
microbiome.

Discussion
Ever since links between gut microbiome dysbiosis and complex,
chronic diseases were established, there has been a keen inter-
est in understanding what a healthy gut microbiome would look
like, and how therapies can be designed to restore gut dysbiosis to
a healthy state. Fuelled by these interests, scientists have aimed
to uncover recurrent patterns in gut microbiome composition by
categorizing gut microbiomes into enterotypes. However, despite
some broadly shared properties (18, 23), no universally recognized
taxonomic property in the gut microbiomes of healthy subjects
has been found. In this study, we demonstrate that gut micro-
biomes can indeed show patterns of organization that are com-
mon across different studies. Notably, these patterns are defined
in terms of the ecological organization when considering both
hosts and microbes simultaneously rather than hosts or microbes
separately.

We used SBMs to formally identify robust organization princi-
ples of the healthy human gut microbiome. By focusing on both
groups of microbes and hosts simultaneously, we found that mi-
crobe abundance matrices display a nested structure that eluci-
dates well-defined ecological roles (i.e. generalists vs. specialists).
Some hosts and microbial species are generalists: generalist mi-
crobes are present in non-negligible abundances in most hosts,
while generalist hosts contain the majority of microbial species in
non-negligible abundances. In contrast, some other hosts and mi-
crobes are specialists: specialist microbes are only present in gen-
eralist hosts, and specialist hosts only have non-negligible abun-
dances of generalist microbes.

There has been much interest in the origin of nested ecolo-
gies, as such nested organization has been observed in a num-
ber of ecological systems (30). It was first reported in faunas of
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Fig. 6. Relationship between Shannon diversity index and host rank. For each dataset, we show the Shannon diversity index vs. the rank of each host
in the ordered relative abundance matrix (i.e. the position of the row which corresponds to a host in the ordered abundance matrix). Low ranks
correspond to generalist hosts and high ranks correspond to specialist hosts. We also show the Spearman’s ρ and its corresponding P-value. In all
datasets, we observe a significant inverse correlation between the Shannon diversity index and host rank. Study datasets: (a) Liu et. al, (b) Qin et al.l, (c)
Schirmer et al., (d) Huttenhower et al. and Lloyd-Price et al., and (e) Zeevi et al. Points in the scatter-plots indicate individual gut microbiome samples.

insular fragmented habitats and in archipelagos (29, 48). Other
cases of nested hierarchies were found in endoparasite commu-
nities in fish (31) and parasite communities in geographically dis-
persed species of bats (33). Furthermore, nestedness has been
found in ecosystems with mutualistic interactions (30, 32, 53,
54), i.e. ecological relationships benefiting both parties. Pollinator–
plant networks are a common example of mutualistic networks;
pollinators obtain their food while pollinizing the plants. Such
nested ecological structures have even been suggested to play a
role in optimizing and balancing species abundances in the pres-
ence of mutualistic interactions (55). Despite much progress in
its study, however, the relationship between mutualism, nested-
ness, stability, and species diversity is still relatively poorly under-
stood and remains a subject of close and careful investigation (36,
56–58).

We can establish several connections between human gut mi-
crobiomes and other nested ecosystems. First, the relationship
between hosts and their microbiomes is well-known to be mu-
tually beneficial. A prominent example is in food digestion, in
which microbes in the gut, such as those in the Bacteroidetes phy-
lum, aid in the degradation of dietary complex polysaccharides
(15, 59–61). Second, we can draw straightforward analogies with
findings in the macroecology literature. For the case of island bio-
geography, hosts can be viewed as islands and microbiota as the
island fauna. Several mechanisms have been put forward to ex-
plain the nestedness observed in island faunas, such as selec-
tive extinction, colonization ability, habitat nestedness, and hu-
man intervention (30, 47, 62, 63). In regard to the gut microbiome,
all of these explanations can offer promising clues and insights
into how the microbes assemble and respond to perturbations.
For instance, Cook and Quinn (47) found that, in collections of is-
lands, fauna with large dispersal ability (such as birds) show more
nested abundance patterns across islands than reptiles and mam-
mals. Their finding could possibly suggest that, in a gut micro-
biome context, a gradient in colonization ability (in which dis-
persal ability is a strong factor) may contribute to the nested
organization in microbial species abundances observed in our
study.

Other studies have shown that when colonizing new patches,
animals with larger trophic breadths (food generalists) build the
first successful colonies; and thereafter, food specialists (typi-
cally predators that feed on a narrow range of prey) arrive at a
later stage (64, 65). An explanation of these observations is that
species with large trophic breadths are able to survive compar-
atively well in ecosystems subject to fluctuations, whereas food
specialists need more mature, developed, and diverse ecosystems

to survive. By drawing a direct analogy with these observations,
our results suggest that specialist hosts have gut environments
that offer relatively restricted living conditions for microbes. In
summary, our study offers the opportunity to bridge the gap be-
tween macroecology and gut microbiome studies, and thereby
shines a new perspective on human-associated microbial ecology
research.

As a methodological point, we note that inferring clusters (or
microbial communities) based on Dirichlet multinomial processes
or other probabilistic mixture models is indeed a common ap-
proach for microbial community detection from metagenomic
data (whether the inferred distributions are biologically meaning-
ful or accurate is a different issue) (44, 45). To clarify, the Dirich-
let multinomial mixture model pipeline developed by Holmes
et al. (45) was designed to find clusters of microbial communi-
ties, whereas our SBM framework is a biclustering technique that
allows simultaneous clustering of both microbes and hosts; in
addition, the Dirichlet model was not designed for the predic-
tive tasks we used to validate our approach, namely, prediction
of held-out microbial relative abundances. Specifically, as part of
its input, the Dirichlet model needs all the metagenomic reads in
each host’s microbiome sample to give the inferred multinomial
model parameters. However, its current implementation does not
work when a subset of the microbial species’ reads are held-out
in cross-validation, as we had done to compare our SBM approach
against the agglomerative clustering pipeline. While it would be
possible to program a different implementation of the Dirichlet
model specifically intended for our prediction experiments, this
task falls outside of the scope of our current study.

To conclude, we demonstrate that the human gut microbiome
does indeed have robust structural patterns underlying its taxo-
nomic composition. To this point, our study may contribute to-
ward defining the design principles of a healthy gut microbiome,
developing better models to understand gut microbiome evolu-
tion, and establishing strategies to restore or maintain wellness in
the form of probiotic communities. An open question is whether
diseases can disrupt the nested structure of healthy microbiomes.
If that were the case, nestedness would be a straightforward met-
ric of the health state of gut microbiomes, and interventions could
be designed to restore the original ecological pattern. Explorations
into these topics will be the subject of our future studies.
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