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In this study, we investigated on a systems level how complex
protein interactions underlying cell polarity in yeast determine the
dynamic association of proteinswith the polar cortical domain (PCD)
where they localize and perform morphogenetic functions. We
constructed a network of physical interactions among >100 pro-
teins localized to the PCD. This network was further divided into
five robust modules correlating with distinct subprocesses associ-
ated with cell polarity. Based on this reconstructed network, we
proposed a simple model that approximates a PCD protein’s molec-
ular residence time as the sumof the characteristic time constants of
the functional modules with which it interacts, weighted by the
number of edges forming these interactions. Regression analyses
showed excellent fitting of the model with experimentally mea-
sured residence times for a large subset of the PCD proteins. The
model is able to predict residence times using small training sets.
Our analysis also revealed a scaffold protein that imposes a local
constraint of dynamics for certain interacting proteins.
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The study of many complex biological systems has reached
a stage where much is known about the molecular compo-

nents and their functional capacity and interactions. A challenge
at hand is how to integrate this wealth of information to explain
complex behaviors at the systems level. Cell polarity in the
budding yeast Saccharomyces cerevisiae represents one such ex-
ample (1–4). Functional analyses of the proteins involved have
uncovered several subfunctions in the establishment and main-
tenance of cell polarity, including GTPase signaling, actomyosin-
based transport, exocytic deposition of membrane components
and cell wall materials, and endocytic recycling (1–4). Spatio-
temporal coordination of these subfunctions leads to the mor-
phogenesis of a bud required for cell division, or a shmoo-like
projection required for mating.
Existing data suggest that the polar cortical domain (PCD) is a

dynamic assembly of loosely interacting components (5–8).
Hence, “protein dynamics” in this study refers to the cycle of
association and dissociation of polarity proteins with the PCD.
Detailed analysis of Cdc42, a key regulator of cell polarity, has
shown that the stability and shape of the PCD require balanced
molecular flux and appropriately specified parameters governing
the rates of Cdc42 dynamics (6, 9). A more challenging question
is how a system composed of hundreds of different protein mol-
ecules associating and dissociating at different rates could func-
tion coherently and bring about precise morphogenetic outcomes.
A basic assumption that we make to investigate this problem on
a systems level is that the dynamics of the peripherally associated
PCD proteins are governed by complex interactions.
In this study, we first constructed a modularized network of

physical interactions among all the known proteins localizing to
and participating in the functions of the PCD. We then used an
inverse fluorescence recovery after photobleaching (iFRAP)
analysis to measure the dynamics of a subset of the PCD proteins
in two of the key functional modules. Initially, we explored simple
correlations between iFRAP time and diverse network parameters

describing node properties. A lack of correlation in these analyses
led us to construct and test a mathematically simple but concep-
tually rich model, which relates protein dynamics not only to
protein interactions but also to the modular network structure and
intrinsic kinetic parameters associated with module functions.

Results
Construction of a Modular Network of Interactions Among PCD
Proteins. We used the genome-wide GFP-tagged yeast protein
localization database (10) to generate a comprehensive list of
proteins that localize to the PCD at the tip of the nascent bud.
The expected localization was confirmed for 111 proteins (SI
Appendix, Table S1). We added several Rho and Rab family
GTPases to this list, which are known to localize to the small bud
tip (1, 2, 11). To reduce unnecessary complexity, subunits of two
tightly associated stoichiometric complexes, the exocyst (12) and
the Arp2/3 complex (13), were grouped together as single nodes
as Exo and Arp, respectively. Two nodes were used to represent
actin: actin cables (Act1C) serving transport function and actin
patches (Act1P) mediating endocytosis.
We next used the BioGrid database (version 2.0.51) to con-

struct a network of protein interactions containing 99 nodes and
302 linkages (SI Appendix, Fig. S1). Finally, we used a computa-
tional method designed to unravel modules in the network (14–
16). Because protein interaction networks built from information
in databases often contain false-positive or missing linkages, we
designed a scheme that combined network reconstructions (17)
with modularity maximization to control for error sensitivity in
module identification (SI Appendix, Fig. S2 A–D). This analysis
identified five consensus modules in the PCD network (SI Ap-
pendix, Fig. S3). Proteins classified in the same module typically
have known functions within a common subprocess related to
cell polarity. Four of the five modules correlate with functions
known to be required for polarity and morphogenesis in yeast
and are designated as Signaling, Transport, Endocytosis, and
Exocytosis modules (Fig. 1A and SI Appendix, Table S2). The
remaining module, named Mitotic Exit, includes proteins in-
volved in the regulation of the exit from mitosis (18).

Measurement of PCD Protein Dynamics in Live Yeast Cells. To assess
patterns of protein dynamics across the system, we performed an
analysis of the dynamics for most components (those that are
taggable with GFP and are not transmembrane proteins) in the
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Signaling and Transport modules, which are critical for cell po-
larity establishment, taking advantage of the yeast ORF-GFP
strain collection (10). We chose to use iFRAP (19, 20), wherein
the dissociation of fluorescent protein molecules from the PCD
was measured after photobleaching of the cytosolic pool (Fig. 2
A–C). The half-time (t1/2) of fluorescence loss approximates the
protein’s residence time on the polar cortex.
To ensure comparison at the same stage of polarization, cells

with a nascent bud 1.45 ± 0.2 μm in diameter were chosen for
iFRAP measurements. A C-terminal GFP tag was present directly
at the native chromosomal locus of each of the tagged proteins in
haploid yeast cells (10). For the Rho family proteins, GFP must
be introduced at the N terminus and the tagged proteins are
functional (SI Appendix, Fig. S4). The t1/2 was calculated for each
protein after curve fitting using a monoexponential function (21),
a necessary simplification for the purpose of this study.
Fig. 2 displays sample iFRAP curves (Fig. 2A–C andMovies S1,

S2, and S3), and all measured t1/2 values for 29 proteins in the
Signaling and Transport modules (Fig. 2D and E and SI Appendix,
Tables S4 and S5). This result shows that most components of the
Transport and Signaling modules are highly dynamic, with t1/2 in
the range of 10–30 s. At the most dynamic end (smallest t1/2) lies
Bem1 (t1/2 = 10.16 ± 1.56 s), which was postulated to be an
adaptor protein that tethers complexes containing Cdc42, Cdc24,
and Cla4 (22). At the slow end of the spectrum, Pea2 (23),
a component of the “polarisome” (24), associates with the bud tip
with the highest stability (t1/2 = 92.3 ± 12.7 s), whereas other
polarisome proteins, such as Bni1, Bud6, and Spa2, exhibited
varying t1/2 values considerably smaller than that of Pea2, sug-
gesting that these proteins do not interact with the PCD as a single
unit. An ANOVA test found that proteins in the Signaling module
are, on average, more dynamic than those in the Transport
module (P= 4.26E-16), with an average t1/2 of 18.5± 0.72 s (mean

± SE of mean) and 25.1 ± 1.8 s, respectively. The t1/2 values are
also significantly different for proteins within modules (P=5.50E-
56), however. Further analysis shows that there is no clear sepa-
ration of t1/2 between components of the two modules, aside from
the few very slow components in the Transport module (e.g., Pea2,
Rho1) (SI Appendix, Table S6). This result suggests that although
the average dynamics of the two modules are significantly differ-
ent, the dynamics of individual components of these modules
cannot be predicted based only on their module assignment.
We first searched for simple correlations between the mea-

sured protein residence times and parameters describing node
properties, such as degree, the number of edges (or interactions)
connected with a node. No significant linear correlation was
found between degree and t1/2 values (SI Appendix, Fig. S5A).
Likewise, no significant linear correlation was found between t1/2
values and any of the several commonly used parameters, such as
betweenness (SI Appendix, Fig. S5B), participation coefficient (SI
Appendix, Fig. S5C), and others (SI Appendix, Table S7). We also
investigated if proteins that interact with each other tended to
have similar dynamics on a global level by testing if a protein’s
t1/2 is closer to its interaction partners than its noninteraction
partners for all 29 proteins. Analysis showed no differences for
18 proteins (SI Appendix, Table S8). For the other 11 proteins,
4 (yellow) were shown to have more similar dynamics to the
noninteraction partners, with 5 being more similar to the in-
teraction partners and 2 (green) being equally different from
both noninteraction and interaction partners (SI Appendix, Table
S8). These results suggest no simple correlations between dy-
namics and a protein’s interactive properties.

Modeling Protein Dynamics Based on a Modular Network Structure.
Our failure in finding simple correlations between iFRAP times
and node properties might be explained by a lack of consider-

Fig. 1. Modular organization of the yeast PCD protein
interaction network. (A) Visualization of the modularized
PCD protein interaction network. Five modules with dis-
tinct functions constitute this network: Signaling (red),
Transport (brown), Endocytosis (blue), Exocytosis (green),
and Mitosis Exit regulation (gray). The different node
shapes represent different universal roles as indicated.
Cdc42 protein is used as an example to explain the method
for reduction of the local connectivity of each node to the
global connectivity to the modules with assigned kinetic
parameters. (B) Description of the interactions (colored
lines) of Cdc42 with proteins in different modules (large
circles). (C) Mathematical representation of PCD protein
interaction network and dynamics. The global connectivity
of Cdc42 is represented by a 5D integer vector composed
of the number of Cdc42’s linkages with each of the five
modules. Each module is also assigned a characteristic time
constant, τi (τ1–5 for Signaling, Endocytosis, Transport,
Mitotic Exit, and Exocytosis, respectively).
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ation for the modular architecture of the network as well as some
intrinsic kinetic properties in module functions. To construct
a model incorporating inputs from these more global properties,
we first reduced the modular network to a simpler structure: the
interactions of a given PCD protein p with other proteins are
replaced by the interactions between the protein and each of the
modules that harbors the interacting proteins. Thus, the protein
p is described by the integer 5D vector Np = {Np,1, Np,2, Np,3,
Np,4, Np,5}, where Np,i denotes the number of interactions of the
protein p with proteins belonging to the ith module (Fig. 1 B and
C, using the protein Cdc42 as an example). To introduce dy-
namics into this system, we assigned a single characteristic ki-
netic parameter, τi, to the ith module. τi has the dimension of
time but has no absolute biological meaning. Thus, the network’s
dynamic properties are described by another 5D vector, τ = {τ1,
τ2, τ3, τ4, τ5}. The main model equation (Eq. 1):

τp ¼
XN
i¼1

Np;i

Np
fiðτÞ; [1]

where

Np ¼
XN
i¼1

Np;i

relates the reduced network protein vector, Np, to the protein’s
dynamic parameter, τp. This formula means that τp is a weighted

average of functions fi (τ) that depend on some or all parameters
τi. The choice of the functions fi is limited only by a restriction
that it should have the dimension of time. In the simplest case,
the dynamics of any protein interacting with the ith module are
determined solely by this module [i.e., fi (τ) = τi], given by Eq. 2:

τp ¼
XN
i¼1

Np;i

Np
τi [2]

We scale τp as the residence time of protein p on the
polar cortex.

Validation of the Model and the Model’s Predictive Ability. To
evaluate if the model (Eq. 2) fits well with the experimentally
observed protein dynamics, we utilized a multivariate regression
analysis using the normalized number of interactions that each of
the 29 proteins has with each module of the network as the
predictor variables and the experimentally determined t1/2 values
as the variables to be predicted (Materials and Methods). The
resulting Pearson coefficient between predicted and measured
t1/2 values was 0.66 (P = 0.0001), suggesting that the model
performs well in describing the experimental measurements.
Next, we tested the predictive ability of the model by selecting

10 proteins (Bni1, Cdc42, Cdc24, Cla4, Bem1, Myo2, Spa2,
Ste20, Rho3, Mkk1) t1/2 values as the training set to calculate the
module characteristic times (τ). We reasoned that the choice of
this training set must be such that it is most informative about all
modules of the network, and should therefore include proteins

Fig. 2. Experimental measurements of protein dynamics using iFRAP. (A–C) Images from iFRAP experiments and sample curves for proteins GFP-Rho3, GFP-
Rho1, and Pea2-GFP. Red lines encircle bleached areas, and yellow lines encircle areas of fluorescence measurements. Red arrows indicate the time of iFRAP
bleaching. The raw fluorescence measurements were subjected to monoexponential curve fitting (solid red curves). (Scale bar: 2 μm.) (D) Dynamics (measured as
iFRAP t1/2) of 11 proteins in the Signaling module. Boxes show the range of 1 SEM from the mean, represented by small squares. Vertical bars show the range of
1 SD from the mean. The horizontal line in the boxes represents the median. (E) Dynamics (measured as t1/2) of 18 proteins in the Transport module represented
as described in D. Note that the vertical time scale (0–50 s) for the 15 proteins on the left is different from that (0–180 s) for the 3 proteins on the right.
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with maximal numbers of nonzero elements of the integer vector
Np. Using the regression analysis, the t1/2 measurements from
this training set predicted characteristic times, τ, to be 12.85,
27.27, 20.89, 82.20 and 3.86 s for the Signaling, Endocytosis,
Transport, Mitotic Exit, and Exocytosis modules, respectively.
These τ values were then used to predict the t1/2 values for the
other 19 proteins using Eq. 2. The resulting Pearson correlation
coefficient between the predicted and measured values was 0.56
(P = 0.0092). Furthermore, because the large τ calculated for
the Mitotic Exit module predicts relatively large t1/2 values for
the mitotic exit proteins exhibiting mostly intramodule inter-
actions (e.g., 73.0 and 82.2 s for Kel1 and Lte1), we performed
iFRAP analysis on Kel1 and Lte1, and yielded average t1/2 values
of 87.4 and 49.8 s, respectively (SI Appendix, Fig. S6 and SI
Appendix, Table S9). The overall correlation between predicted
values and experimental measurement for the 21 proteins not
used for the training set was 0.57 (P = 0.0071) (Fig. 3A).
To test if the training set that we chose represented the best

training set, 1,000 randomly drawn sets of 10 proteins t1/2 values
were used to build a linear regressionmodel and predict residence
time for either the 19 remaining Signaling and Transport module
proteins (Fig. 3B) or 21 proteins (adding Lte1 and Kel1) (Fig. 3C).
Random sets not connected to all five modules (thus unable to
make predictions globally) or predicted negative τ values were
removed from the analysis. This analysis found that many dif-
ferent training sets are capable of significant predictions and that
our chosen set was among the best performers (Fig. 3 B and C).
We next tested whether modularity is indeed required for the

model by investigating the scenario wherein the entire network
is considered as a single module. The integer 5D vector Np was
reduced to a single integer of the node, and in this scenario, the
dynamics of the system would be characterized by a single τ.
The model predicts a single residence time for all network
components approximated by τ, which can be estimated as the
average of the measured t1/2. Such predicted residence times do
not correlate with the experimentally measured t1/2 values
(Pearson correlation coefficient = 0), suggesting that network
modularity is a critical requirement for our model to predict
protein dynamics.

Local Scaffolding Effect of Pea2. The dynamics of the three slow
proteins of the Transport module (Pea2, Rho1, and Lrg1) were
not well predicted by the global model (Fig. 3A). We investigated
the possibility that the slowest protein (Pea2), postulated to be
a scaffold protein (24), may have a strong effect on the dynamics
of proteins that directly interact with it. A physical interaction
between Rho1 and Pea2 was not reported in the literature, but in
vivo evidence of this interaction can be shown by FRET in live
cells expressing Pea2-mCherry and GFP-Rho1 under their native
promoter (SI Appendix, Fig. S7). Supporting a strong effect of
Pea2 on Rho1 dynamics, deletion of PEA2 rendered Rho1 sig-
nificantly more dynamic (Fig. 4 and SI Appendix, Fig. S8). A
further examination of proteins having a close connection with
Pea2 in the network revealed a trend of increasing dynamics
(t1/2), along a hierarchy of interactions descending from Pea2
(Fig. 4A). Like Rho1, the t1/2 for two of the first-tier Pea2
interactors, Spa2 and Bud6, were significantly reduced in pea2Δ
(Fig. 4B; SI Appendix, Fig. S8; and SI Appendix, Table S10). The
localization of the other two, Msb3 and Msb4, was drastically
diminished in the mutant, which prevented dynamics measure-

Fig. 3. Correlation of measured vs. model-predicted residence times and
training set analysis. (A) Correlation of mean measured residence times with
the values predicted by the model, utilizing the characteristic module times
(τi) calculated using the 10-component training set, for the proteins in the
Signaling and Transport modules (black dots) and 2 proteins in the Mitotic
Exit module (blue dots). The three outliers (Pea2, Rho1, and Lrg1) are rep-
resented by brown dots. (Inset) Correlation for the training set components
(green dots). (B) Performance of qualified training sets randomly drawn
(black dots) from the measured t1/2 values of 29 proteins in Signaling and
Transport modules in predicting the residence times for the 19 remaining

proteins in these modules. The y axis represents the errors (as square root of
error mean square) obtained by the least-squares multivariate regression
method using each training set (Materials and Methods). The x axis indicates
the correlation coefficient between the measured t1/2 values and predicted
residence values. The red point indicates the performance of our chosen
training set. (C) Same analysis and representation as in B, except for pre-
dicting residence times for 21 proteins (19 as in B plus the 2 proteins in the
Mitotic Exit module).
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ment by iFRAP. In contrast, pea2Δ did not consistently or as
drastically alter the dynamics of proteins further down the hi-
erarchy from Pea2 (Fig. 4, SI Appendix, Fig. S8; and SI Appendix,
Table S10).
To determine what role Pea2 might play in Rho1 polarization,

we performed time-lapse microscopy to compare the kinetics of
GFP-Rho1 polarization to the PCD in WT and pea2Δ cells.
Interestingly, not only did Rho1 polarize robustly in the mutant
cells, but, in fact, polarization occurred at a significantly higher
rate in the mutant than in WT cells (Fig. 5 A and B; SI Appendix,
Fig. S9; and Movies S4 and S5). Because Rho1 is a key regulator
of cell wall glucan synthesis and remodeling (25), we measured
the rate of cell wall growth in buds of WT and pea2Δ cells.
Fluorescently labeled Con A was used to identify the regions of
cell wall growth (26), and the rate of cell wall surface area in-
crease was quantified over time (Fig. 5 C and D). Following the
same trend as the effect on Rho1 polarization, the rate of cell
wall growth in pea2Δ cells was also significantly higher than in
the WT (P = 0.0020). These results suggest that Pea2 is not
required for the establishment or maintenance of cell polarity
but modulates the rates of Rho1 polarization and polarized cell
surface growth.

Discussion
The analysis presented above provides a systems level account of
how a network of protein interactions explains dynamic prop-
erties of proteins required for polarity and morphogenesis in
budding yeast. The use of a computational algorithm, based
purely on maximization of a mathematically defined modularity
function, identified a modular organization of the interaction
network among cell polarity proteins that is strikingly consistent
with known functional pathways involved in cell polarization.
This result strongly supports the notion that modularity underlies
the evolution of complex functions in biological systems (27–29).

The most important result of our analysis is that the dynamics
of most of the PCD proteins can be approximated by a simple
mathematical model accounting for their connectivity to network
modules and intrinsic kinetic parameters of module functions.
Our model implies that if a protein interacts mainly with com-
ponents of the module to which it belongs, its residence time
should approximate the module’s characteristic time. If a protein
also interacts with other modules of the network, however, its
residence time will deviate from the characteristic time of its
assigned module. The physical meaning of this model is that
proteins interacting with a given module are dynamically coupled
with the function performed by this module. A well-known classic
theory on dynamic coupling is the Kuramoto model of oscillator
coupling, which deals with unimodular distribution of oscillator
frequencies (30). With five modules, our system is more complex,
and unlike the classic theory, which relies on the assumption of
uniform interaction between oscillator units, degree varies con-
siderably from node to node in the PCD network. The mathe-
matical relationship between our model and the Kuramoto model
was explored, and the findings are described in SI Appendix.
Although previous studies from us and others have suggested

that some of the PCD proteins are dynamically localized (5, 6,
31, 32), others have raised the potential importance of molecules
that are more stably anchored and may serve as structural scaf-
folds during polarity establishment and maintenance (33, 34).
Our large-scale iFRAP data suggest that the PCD can be gen-
erally characterized as a highly dynamic molecular ensemble,
possibly a design feature suitable for maintaining association
with the rapidly growing membrane at the tip of the bud. Our
analysis did reveal a scaffold protein, Pea2, that exhibits a large
residence time and suppresses the dynamics of Rho1 and other
interacting proteins. Unexpectedly, deletion of Pea2 did not
prevent cell polarization or polarized growth but, instead, led to

Fig. 4. Effects of the scaffold protein Pea2 on the dynamics of its inter-
acting proteins. (A) Local hierarchical organization of protein dynamics
descending from Pea2 (green). It can be observed that proteins (red) more
closely interacting with Pea2, generally exhibit longer t1/2s than those (blue)
further away from Pea2 in the hierarchy (the only exception is Yor304c-a).
Shown are those components for which residence times were determined by
iFRAP analysis. (B) Effects of pea2Δ on the dynamics of a subset of proteins in
the hierarchy depicted in A examined by iFRAP. Shown are % changes of t1/2
in pea2Δ compared with those in the WT. Red bars represent proteins in the
higher hierarchy that directly interact with Pea2, and blue bars represent
those in the lower hierarchy shown in A.

Fig. 5. Effects of Pea2 on polarization kinetics and the rate of polarized
growth. (A) Observation of GFP-Rho1 polarization in WT (black) and pea2Δ
cells (green) by time-lapse movies (Movies S4 and S5). The plots show rep-
resentative time-dependent changes in the average fluorescence intensity of
GFP-Rho1 in the PCD, normalized against the average intensity in the whole
cell. (B) Quantification of the rates of Rho1 polarization in time-lapse movies
as described in A. The polarization rate was defined as the slope at the in-
flection point of the sigmoid curve used for fitting. Statistical representation
is the same as described in Fig. 2D. (C) Example cell images for cell wall
growth during budding in WT and pea2Δ cells by fluorescent Con A staining.
Regions staining only with Texas Red Con A but not FITC Con A (red-only
zones in merged images) represent a recent area of cell wall growth. (Scale
bar: 2 μm.) (D) Quantification of cell wall growth during budding in WT and
pea2Δ cells by fluorescent Con A staining. Plots show the increase in the area
of growth over time. Averages of measurements from 15 to 25 cells per time
point per strain are shown. Error bars reflect SEM.
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increased rates of these processes. A possible explanation is that
a higher rate of Rho1 GTPase recycling from the cortical mem-
brane may enable more rapid protein redistribution during sym-
metry breaking and faster cycles of glucan synthase activation.

Materials and Methods
Yeast Strains, Cell Culture, Growth Conditions, and Plasmids. Techniques for
yeast cell culture and genetics were essentially as described previously (35).
Most of the GFP-tagged strains were from the library of GFP-tagged proteins
in budding yeast (10). All yeast strains are isogenic to S288C and listed in
SI Appendix, Table S11. The functionality of the GFP-Rho1– and GFP-Rho3–
tagged proteins was assessed in rho1Δ and rho3Δ backgrounds (SI Ap-
pendix, Fig. S4).

Network Module Analysis. Given a network, for a certain partition, P, of the
nodes into modules, the modularity, M(P), is defined as follows:

M ≡
XNM

s¼1

"
ls
L
−
�
ds

2L

�2
#

where NM is the number of modules, L is the number of links in the network,
ls is the number of links between nodes in module s, and ds is the sum of the
connectivity (degrees) of the nodes in module s. Modules (and the optimal
number of modules) are typically identified by selecting the partition, P*,
that maximizes M(P) (14). Further details about robust module identification
are provided in SI Appendix.

Time-Lapse Imaging, iFRAP, and FRET Measurements. All time-lapse images
were acquired with an inverted Zeiss 200m outfitted with a spinning-disk
confocal system (Yokagawa), a Plan-Apochromat 100×, a 1.4-N.A. oil ob-
jective, and an EM-CCD (C9100; Hamamatsu). Image acquisition and anal-
ysis were performed with Metamorph acquisition software (version 6.0;
Molecular Devices).

Details about imaging experiments and data analysis are provided in
SI Appendix.

Regression Analysis and Statistics. Regression analysis was performed using
SAS 9.2 (SAS Institute). For the analysis comparing average t1/2 values for two
modules, we fitted a model that included module effect and protein effect,
such that the protein effect was considered as nested within the module. We
also fitted a model without considering the module effect to compare the
difference between all proteins. The Tukey method was used for pairwise
comparison. A two-way ANOVA model was used for the analysis comparing
cell wall growth and the analysis comparing the average t1/2 values between
a protein itself and its directly interacting proteins or its indirectly inter-
acting proteins (SI Appendix, Table S8).
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