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Abstract This study examines MaxEnt methods for probabilistic inference of the

state of flow networks, including pipe flow, electrical and transport networks, sub-

ject to physical laws and observed moments. While these typically assume net-

works of invariant graph structure, we here consider higher-level MaxEnt schemes,

in which the network structure constitutes part of the uncertainty in the prob-

lem specification. In physics, most studies on the statistical mechanics of graphs

invoke the Shannon entropy H Sh
G = −

∑

�G
P(G) ln P(G), where G is the graph

and �G is the graph ensemble. We argue that these should adopt the relative entropy

HG = −
∑

�G
P(G) ln P(G)/Q(G), where Q(G) is the graph prior associated with

the graph macrostate G. By this method, the user is able to employ a simplified

accounting over graph macrostates rather than need to count individual graphs. Using
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combinatorial methods, we here derive a variety of graph priors for different graph

ensembles, using different macrostate partitioning schemes based on the node or

edge counts. A variety of such priors are listed herein, for ensembles of undirected

or directed graphs.

Keywords Maximum entropy · Graphs · Networks · Graph priors · Graph

ensemble

1 Introduction

Over the past few years, we have developed a MaxEnt framework to infer the state of

flow on all types of flow networks, for example, pipe flow, electrical, communications

and transport networks [1–4]. In this approach, the user adopts the relative entropy:

HX = −

∫

�X

P(X) ln
P(X)

Q(X)
dX (1)

in which X are the unknown network parameters (such as flow rates and potentials),

P(X) is a joint probability density function (pdf) over X, Q(X) is the prior pdf, and

�X is the domain of X. The entropy (1) is maximized, subject to the constraints on

the network, to infer the state of the network. The constraints necessarily include

all relevant physical laws (such as Kirchhoff’s node and loop laws), as well as any

physical observations measured at particular nodes, edges or over components of the

network. The resulting inference is expressed in terms of the pdf P(X), which can

either be used directly, or from which the moments or other statistical features of the

flow (e.g., mean, mode, variances) can be extracted. The MaxEnt method, therefore,

provides one approach to extend previous deterministic methods for flow network

analysis, applicable only to fully determined networks, to a probabilistic framework

which can handle incomplete information.

In the past decade, there has been a tremendous surge of interest in the structural

properties of networks in statistical physics (and other fields), especially the emer-

gent scaling features of the Internet and human social networks [5–8]. Such studies

generally consider the probability P(G) of a graph G within a graph ensemble �G ,

almost always inferred by maximizing the Shannon entropy [9]:

H Sh
G = −

∑

G∈�G

P(G) ln P(G) (2)

While correct, this formulation does not exploit the fundamental advantage of statis-

tical mechanics, based on the separate counting of observable macrostates and their

underlying microstates. Instead of (2), network analysts and graph theorists would
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be better advised to adopt the discrete relative entropy (negative Kullback–Leibler)

function [10]

HG = −
∑

G∈�G

P(G) ln
P(G)

Q(G)
(3)

now based on the graph macrostates G, defined as equivalence classes (sets) of graphs

which partition the ensemble �G . P(G) and Q(G) now represent the posterior and

prior probabilities of the macrostate G within the graph ensemble �G . Eq. (3) ensures

that maximizing (3), subject only to normalization, gives the inferred state P∗(G) =

Q(G) [11]. Further constraints will then restrict the ensemble, either by removing

(microcanonical ensemble) or weighting (canonical ensemble) its constituent graphs,

causing P∗(G) to deviate from Q(G) consistent with these constraints. In contrast,

the Shannon form (2) requires the counting of each individual graph in an ensemble,

which may be quite onerous for large ensembles, and does not provide the user with

any insights from the network structure.

We can indeed unite the above fields, to present a MaxEnt framework for proba-

bilistic inference of flows on a network, subject to uncertainty in the flow parameters

and in the network structure itself. This entails use of the relative entropy function:

HG,X(G) = −
∑

�G

∫

�X(G)

P(X(G), G) ln
P(X(G), G)

Q(X(G), G)
dX (4)

where P(X(G), G) and Q(X(G), G) are the joint posterior and prior pdfs, defined

over parameters X and graph macrostates G. As a first step, analyzes using (4) will

generally invoke the Bayesian separation:

Q(X(G), G) = Q(G)Q(X(G)|G) (5)

based on the distinct graphical and flow priors Q(G) and Q(X(G)|G). For some

flow networks, complete separability Q(X(G), G) = Q(G)Q(X) may be possible.

The aim of this study is to formally derive the priors Q(G) for graph macrostates

in a variety of graph ensembles, as a prelude to later studies on the joint graph and

flow parameter priors Q(X(G), G). We here note that graph priors will not only

depend on the graph ensemble selected, but also on the rule (equivalence relation)

used to partition the ensemble into graph macrostates. Different partitioning rules

will obviously give rise to different priors —there are many ways to count cats in a

collection of user-selected baskets of cats. The choice of ensemble and partitioning

scheme must, therefore, be made by the user, and so will depend on his/her purpose,

although some approaches will be more mathematically tractable or fruitful.
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2 Derivation of Graph Priors

In statistical physics, the degeneracy g(G) of a discrete macrostate G can be defined

as its statistical weight or number of occurrences in the ensemble [12], counting

each component graph (or microstate) once each. If the entire ensemble �G is also

countable and finite, then the prior can be calculated by

Q(G) =
g(G)

|�G |
(6)

where |�G | is the cardinal number of �G . If the macrostate and ensemble are both

countably infinite or uncountable, it may be possible to define the prior by a limiting

process applied to (6), although many such priors will be found to vanish asymptot-

ically.

We here calculate priors for various graph macrostates G in a range of graph

ensembles �G , using partitioning rules based on the numbers of nodes and/or edges.

These include both undirected and directed graph ensembles, each discussed in turn.

The complete sets of results are summarized, respectively, in Tables 1 and 2. In the

following, all nodes and edges are considered distinguishable (are labeled), and so

are counted according to their multiplicities in each macrostate and the ensemble.

Where present, self-edges are each counted only once.

2.1 Undirected Graph Priors

In turn, we discuss various partitioning schemes for undirected graph ensembles,

which are appropriate for the analysis of potential-driven flows, such as electricity,

pipe flow and chemical networks. All results are tabulated in Table 1.

(1) We first consider an ensemble of simple graphs with N nodes, which can be

partitioned into macrostates based on the number of edges M . We disallow self-

loops. By a little consideration, it will be seen that the degeneracy of each such

macrostate can be derived by the allocation of M indistinguishable digits (such

as 1s) to the upper triangle of elements Ai j of the adjacency matrix A, with all

occupancies restricted to {0, 1}. This gives degeneracy g =
(

TN−1

M

)

, based on the

(N − 1)th triangle number TN−1 = 1
2

N (N − 1) of independent matrix elements.

By summation or direct allocation, the ensemble itself can be shown to have

cardinal number 2TN−1 , hence, the prior is obtained as Q(G) =
(

TN−1

M

)

/2TN−1 .

(2) We then embed the above ’microcanonical’ ensemble into a ’canonical’ ensemble

of all simple undirected graphs with n ≤ N nodes, for fixed N . We consider three

different partitioning schemes:
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(a) A partitioning scheme based on the macrostates with n nodes and M edges.

By construction from (1), we directly obtain the degeneracy g =
(

Tn−1

M

)

and

ensemble dimension
∑N

n=1 2Tn−1 , hence giving the corresponding prior.

(b) A partitioning scheme based on the macrostates with M edges, regardless

of the number of nodes. From (a), the degeneracy is then g =
∑N

n=1

(

Tn−1

M

)

,

while the ensemble dimension is unchanged, giving the corresponding prior.

(c) A partitioning scheme based on the macrostates with n nodes, regardless of

the number of edges. The degeneracy is then given by the subset ensemble

with n nodes, of dimension 2Tn−1 ; using the known ensemble dimension then

gives the prior.

(3) We now consider the ensemble of single-edge undirected graphs with N nodes,

now allowing for self-loops. We consider two partitioning schemes:

(a) In the first scheme, we partition the ensemble into macrostates of graphs with

N nodes, L self-edges and m non-self-edges. The number of graphs in each

such macrostate is given by the number of ways to allocate m elements in the

upper triangle of the adjacency matrix, without self-loops
(

TN−1

m

)

, multiplied

by the number of ways to allocate L self-loops amongst the N diagonal

elements
(

N

L

)

. The ensemble now has dimension 2TN , based on the N th

triangle number TN = 1
2
(N + 1)N , since it includes the diagonal adjacency

elements Ai i . The prior is thus Q(G) =
(

TN−1

m

)(

N

L

)

/2TN .

(b) In the second scheme, we form graph macrostates with N nodes and M

edges, regardless of the number of self-loops. We now use a simpler allo-

cation scheme of elements to the upper triangle of the adjacency matrix,

including diagonal elements, giving the degeneracy
(

TN

M

)

, and correspond-

ing prior. For m = M − L , it can be verified that
∑N

L=0

(

TN−1

m

)(

N

L

)

=
(

TN

M

)

,

so the two partitions give the same results (although the first requires more

information).

(4) We again embed the above ‘microcanonical’ ensembles into a ‘canonical’ ensem-

ble of all undirected graphs with n ≤ N nodes, allowing self-loops. We again

consider several partitioning schemes:

(a) Graphs with n nodes, m non-self-edges and L self-edges;

(b) Graphs with any nodes, m non-self-edges and L self-edges;

(c) Graphs with any nodes, M total edges including self-edges;

(d) Graphs with n nodes and any edges including self-edges.

The resulting degeneracies, ensemble dimension, and priors follow by construc-

tion from those in (3), and are set out in Table 1.

(5) We now consider the ensemble of undirected multigraphs — i.e., with the pos-

sibility of parallel edges including self-loops —and with N nodes. To keep the

ensemble finite, we restrict the total number of edges to C . We wish to exam-

ine graph macrostates with N nodes and M ≤ C edges. Following the previous

logic, we must now consider the allocation of M edges to TN adjacency matrix
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elements, without restriction on occupancy, giving the degeneracy g =
(

TN +M−1

M

)

(n.b., similar to the allocation scheme for Bose–Einstein statistics [12–14]). By

summation of this result over M = 0...C , it can be shown the ensemble has

dimension
(

TN +C

C

)

, leading to the corresponding prior.

(6) We can further embed the above ensemble (5) in a larger ’canonical ensemble’ of

undirected multigraphs with n ≤ N nodes, again with the restriction of maximum

C edges. We again consider several partitions:

(a) Graphs with n nodes, M total edges;

(b) Graphs with any nodes, M total edges

(c) Graphs with n nodes and any total edges.

The degeneracies, ensemble dimension, and priors follow by construction from

(5), and are set out in Table 1.

2.2 Directed Graph Priors

We now replicate the above ensembles and partitioning schemes, but this time for

directed graph structures, generally required for the analysis of transportation net-

works. These results are set out in the same pattern in Table 2 as for the undirected

graph ensembles, and mostly exhibit the same features, but with the following dis-

tinctions:

(i) The macrostates of simple or single-edge digraphs, based on the allocation of

edges to the N × N adjacency matrix, now must account for 2TN−1 independent

elements if there are no self-loops, or N 2 elements with self-loops.

(ii) The macrostates of multidigraphs are now based on the allocation of M edges

to N 2 elements, without restriction on occupancies, giving the degeneracy g =
(

N 2+M−1

M

)

and a corresponding ensemble dimension of
(

N 2+C

C

)

.

2.3 Asymptotic Limits

From Tables 1 and 2, most of the calculated priors for the canonical ensembles (those

with n ≤ N ) vanish in the asymptotic limit N → ∞. Interestingly, some do not

appear to do so. One such prior is that for multigraph macrostates identified by

U
multi,M
N in the undirected multigraph ensemble (Table 1). While, we do not have a

mathematical proof, numerical analyses suggest the following limits:



M
ax

im
u
m

E
n
tro

p
y

A
n
aly

sis
o
f

F
lo

w
N

etw
o
rk

s
w

ith
S

tru
ctu

ral
…

2
6
7

Table 1 Dimensions, degeneracies and prior probabilities for various partitions of undirected graph ensembles

Ensemble Macrostate

Symbol �G Description Dimension |�G | Symbol G Description Degeneracy g(G) Prior Prob. Q(G) Label

�UN
All simple

undirected graphs

with N nodes

2TN−1 U M
N Graphs with N

nodes, M edges

(

TN−1

M

)

(

TN−1

M

)

2TN−1

(U1)

�Un≤N
All simple

undirected graphs

with n ≤ N nodes

N
∑

n=1

2Tn−1 U M
n Graphs with n

nodes, M edges

(

Tn−1

M

)

(

Tn−1

M

)

N
∑

n=1

2Tn−1

(U2)

U M Graphs with any

nodes, M edges

N
∑

n=1

(

Tn−1

M

)

N
∑

n=1

(

Tn−1

M

)

N
∑

n=1

2Tn−1

(U3)

Un Graphs with n

nodes, any edges 2Tn−1 2Tn−1

N
∑

n=1

2Tn−1

(U4)

(continued)
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Table 1 (continued)

Ensemble Macrostate

Symbol �G Description Dimension |�G | Symbol G Description Degeneracy g(G) Prior Prob. Q(G) Label

�
U

�
N

All single-edge

undirected graphs

with N nodes,

incl. self-edges

2TN U
L�,m
N Graphs with N

nodes, m

non-self-edges, L

self-edges

(

TN−1

m

)(

N
L

)

(

TN−1

m

)(

N
L

)

2TN

(U5)

U
�,M
N Graphs with N

nodes, M total

edges incl.

self-edges

(

TN

M

)

(

TN

M

)

2TN

(U6)

�
U

�
n≤N

All single-edge

undirected graphs

with n ≤ N

nodes, incl.

self-edges

N
∑

n=1

2Tn U
L�,m
n Graphs with n

nodes, m

non-self-edges, L

self-edges

(

Tn−1

m

)(

n
L

)

(

Tn−1

m

)(

n
L

)

N
∑

n=1

2Tn

(U7)

U L�,m Graphs with any

nodes, m

non-self-edges, L

self-edges

N
∑

n=1

(

Tn−1

m

)(

n
L

)

N
∑

n=1

(

Tn−1

m

)(

n
L

)

N
∑

n=1

2Tn

(U8)

U�,M Graphs with any

nodes, M total

edges incl.

self-edges

N
∑

n=1

(

Tn

M

)

N
∑

n=1

(

Tn

M

)

N
∑

n=1

2Tn

(U9)

(continued)
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Table 1 (continued)

Ensemble Macrostate

Symbol �G Description Dimension |�G | Symbol G Description Degeneracy g(G) Prior Prob. Q(G) Label

U�
n Graphs with n

nodes, any edges

incl. self-edges

2Tn 2Tn

N
∑

n=1

2Tn

(U10)

�
U

multi,M≤C
N

All undirected

multigraphs with

N nodes, up to C

edges incl.

self-edges

(

TN +C
C

)

U
multi,M
N Multigraphs with

N nodes, M total

edges

(

TN +M−1
M

)

(

TN +M−1
M

)

(

TN +C
C

)

(U11)

�
U

multi,M≤C
n≤N

All undirected

multigraphs with

n ≤ N nodes, up

to C edges incl.

self-edges

N
∑

n=1

(

Tn+C
C

)

U
multi,M
n Multigraphs with

n nodes, M total

edges

(

Tn+M−1
M

)

(

Tn+M−1
M

)

N
∑

n=1

(

Tn+C
C

)

(U12)

U multi,M Multigraphs with

any nodes, M

total edges

N
∑

n=1

(

Tn+M−1
M

)

N
∑

n=1

(

Tn+M−1
M

)

N
∑

n=1

(

Tn+C
C

)

(U13)

U multi
n Multigraphs with

n nodes, any total

edges

(

Tn+C
C

)

(

Tn+C
C

)

N
∑

n=1

(

Tn+C
C

)

(U14)
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Table 2 Dimensions, degeneracies and prior probabilities for various partitions of directed graph ensembles

Ensemble Macrostate

Symbol �G Description Dimension |�G | Symbol G Description Degeneracy g(G) Prior Prob. Q(G) Label

�DN
All simple

digraphs with N

nodes

4TN−1 DM
N Digraphs with N

nodes, M edges

(

2TN−1

M

)

(

2TN−1

M

)

4TN−1

(D1)

�Dn≤N
All simple

digraphs with

n ≤ N nodes

N
∑

n=1

4Tn−1 DM
n Digraphs with n

nodes, M edges

(

2Tn−1

M

)

(

2Tn−1

M

)

N
∑

n=1

4Tn−1

(D2)

DM Digraphs with any

nodes, M edges
N
∑

n=1

(

2Tn−1

M

)

N
∑

n=1

(

2Tn−1

M

)

N
∑

n=1

4Tn−1

(D3)

Dn Digraphs with n

nodes, any edges 4Tn−1 4Tn−1

N
∑

n=1

4Tn−1

(D4)

(continued)



M
ax

im
u
m

E
n
tro

p
y

A
n
aly

sis
o
f

F
lo

w
N

etw
o
rk

s
w

ith
S

tru
ctu

ral
…

2
7
1

Table 2 (continued)

Ensemble Macrostate

Symbol �G Description Dimension |�G | Symbol G Description Degeneracy g(G) Prior Prob. Q(G) Label

�
D

�
N

All

non-multiedge

digraphs with N

nodes, incl.

self-edges

2N 2
D

L�,m
N Digraphs with N

nodes, m

non-self-edges, L

self-edges

(

2TN−1

m

)(

N
L

)

(

2TN−1

m

)(

N
L

)

2N 2

(D5)

D
�,M
N Digraphs with N

nodes, M total

edges incl.

self-edges

(

N 2

M

)

(

N 2

M

)

2N 2

(D6)

�
D

�
n≤N

All

non-multiedge

digraphs with

n ≤ N nodes,

incl. self-edges

N
∑

n=1

2n2
D

L�,m
n Digraphs with n

nodes, m

non-self-edges, L

self-edges

(

2Tn−1

m

)(

n
L

)

(

2Tn−1

m

)(

n
L

)

N
∑

n=1

2n2

(D7)

DL�,m Digraphs with

any nodes, m

non-self-edges, L

self-edges

N
∑

n=1

(

2Tn−1

m

)(

n
L

)

N
∑

n=1

(

2Tn−1

m

)(

n
L

)

N
∑

n=1

2n2

(D8)

D�,M Digraphs with

any nodes, M

total edges incl.

self-edges

N
∑

n=1

(

n2

M

)

N
∑

n=1

(

n2

M

)

N
∑

n=1

2n2

(D9)

(continued)
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Table 2 (continued)

Ensemble Macrostate

Symbol �G Description Dimension |�G | Symbol G Description Degeneracy g(G) Prior Prob. Q(G) Label

D�
n Digraphs with n

nodes, any edges

incl. self-edges

2n2 2n2

N
∑

n=1

2n2

(D10)

�
D

multi,M≤C
N

All multidigraphs

with N nodes, up

to C edges

(

N 2+C
C

)

D
multi,M
N Multidigraphs

with N nodes, M

total edges

(

N 2+M−1
M

)

(

N 2+M−1
M

)

(

N 2+C
C

)

(D11)

�
D

multi,M≤C
n≤N

All multidigraphs

with n ≤ N

nodes, up to C

edges

N
∑

n=1

(

n2+C
C

)

D
multi,M
n Multidigraphs

with n nodes, M

total edges

(

n2+M−1
M

)

(

n2+M−1
M

)

N
∑

n=1

(

n2+C
C

)

(D12)

Dmulti,M Multidigraphs

with any nodes,

M total edges

N
∑

n=1

(

n2+M−1
M

)

N
∑

n=1

(

n2+M−1
M

)

N
∑

n=1

(

n2+C
C

)

(D13)

Dmulti
n Multidigraphs

with n nodes, any

total edges

(

n2+C
C

)

(

n2+C
C

)

N
∑

n=1

(

n2+C
C

)

(D14)
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Q(U
multi,M
N ) =

(

TN +M−1

M

)

(

TN +C

C

)

N→∞
−−−→















0
if M < C

or M = C > O(N 2)
1

2α−1
if M = C = O(αN 2)

1 if M = C < O(N 2)

(7)

For the analogous multidigraph macrostate identified by D
multi,M
N in the multidigraph

ensemble (Table 2), the above limits appear to be repeated, but with limit 1
α−1

for

M = C = αN 2. In both cases, the prior appears to vanish asymptotically for C →

∞.

If these asymptotic limits (and others) can be established more rigorously, they

provide the means to derive graph priors for macrostates in countably infinite graph

ensembles, for which it is not possible to conduct statistical mechanics based on the

counting of individual graphs.

3 Conclusions

We consider graph priors for various ensembles of undirected and directed graphs, to

simplify the analysis of flow networks with uncertainty in the network structure. By

combinatorial reasoning, we formally derive a collection of graph priors for various

choices of graph macrostates in graph ensembles, partitioned according to the num-

bers of nodes and/or edges of graphs in the macrostate. The results are discussed and

listed in tabular form. For simple graphs (no self-edges), single-edge graphs (allowing

self-edges) or multigraphs, the ’microcanonical ensemble’ constructed with a fixed

number of nodes N can be embedded in a higher order ’canonical ensemble’ with up

to N nodes, allowing construction of more and more complicated ensembles. While

most calculated priors appear to vanish asymptotically for countably infinite ensem-

bles, some asymptotic limits have been identified numerically, for multigraphs and

multidigraphs macrostates in certain ensembles. Such asymptotic results suggest a

method to derive graph priors for macrostates in countably infinite graph ensembles,

which cannot be handled by the counting of individual graphs.

Acknowledgements This project acknowledges funding support from the Australian Research

Council Discovery Projects Grant DP140104402, Go8/DAAD Australia-Germany Joint Research

Cooperation Scheme RG123832 and the French Agence Nationale de la Recherche Chair of Excel-

lence (TUCOROM) and the Institute Prime, Poitiers, France.

References

1. Waldrip, S.H., Niven, R.K.: Maximum entropy derivation of quasi-Newton methods. SIAM J.

Optim. 26(4), 2495–2511 (2016)

2. Waldrip, S.H., Niven, R.K.: Comparison between Bayesian and maximum entropy analyses of

flow networks. Entropy 19(2), 58 (2017)



274 R. K. Niven et al.

3. Waldrip, S.H., Niven, R.K., Abel, M., Schlegel, M.: Maximum entropy analysis of hydraulic

pipe flow networks. J. Hydraul. Eng. ASCE 142(9), 04016028 (2016)

4. Waldrip, S.H., Niven, R.K., Abel, M., Schlegel, M.: Reduced-parameter method for maximum

entropy analysis of hydraulic pipe flow networks. J. Hydraul. Eng. ASCE 30 (2017). (accepted)

5. Albert, A., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Modern Phys. 74,

47–97 (2001)

6. Park, J., Newman, M.E.J.: Statistical mechanics of networks. Phys. Rev. E 70, 066117 (2004)

7. Bianconi, G.: Entropy of network ensembles. Phys. Rev. E 79, 036114 (2009)

8. Anand, K., Bianconi, G.: Entropy measures for networks: toward an information theory of

complex topologies. Phys. Rev. E 80, 045102(R) (2009)

9. Shannon, C.E.: A mathematical theory of communication. Bell Sys. Tech. J. 27, 379, 623

(1948)

10. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

11. Kapur, J.N., Kesevan, H.K.: Entropy Optimisation Principles with Applications. Academic

Press Inc., Boston (1992)

12. Brillouin, L.: Les Statistiques Quantiques et Leurs Applications. Les Presses Universitaires de

France, Paris (1930)

13. Niven, R.K., Grendar, M.: Generalized classical, quantum and intermediate statistics and the

Polya urn model. Phys. Lett. A 373, 621–626 (2009)

14. Niven, R.K.: Combinatorial entropies and statistics. Eur. Phys. J. B 70, 49–63 (2009)


