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Fundamental limits to learning closed-form
mathematical models from data

Oscar Fajardo-Fontiveros 1,5, Ignasi Reichardt 1,2,5, Harry R. De Los Ríos 3,
Jordi Duch 3, Marta Sales-Pardo 1 & Roger Guimerà 1,4

Given a finite and noisy dataset generated with a closed-form mathematical
model, when is it possible to learn the true generating model from the data
alone? This is the question we investigate here. We show that this model-
learning problemdisplays a transition froma low-noise phase inwhich the true
model can be learned, to a phase in which the observation noise is too high for
the truemodel tobe learnedby anymethod. Both in the low-noise phase and in
the high-noise phase, probabilistic model selection leads to optimal general-
ization to unseen data. This is in contrast to standard machine learning
approaches, including artificial neural networks, which in this particular pro-
blem are limited, in the low-noise phase, by their ability to interpolate. In the
transition region between the learnable and unlearnable phases, general-
ization is hard for all approaches including probabilistic model selection.

For a few centuries, scientists have described natural phenomena by
means of relatively simple mathematical models such as Newton’s law
of gravitation or Snell’s law of refraction. Sometimes, they arrived to
these models deductively, starting from fundamental considerations;
more frequently, however, they derived the models inductively from
data. With increasing amounts of data available for all sorts of (natural
and social) systems, one may argue that we are now in a position to
inductively uncover new interpretable models for these systems. To
this end, machine learning approaches that can automatically uncover
closed-formmodels from data have been recently developed1–6. (Here
and throughout this article, we refer to closed-form models as those
that are expressed in terms of a relatively small number of basic
functions, such as addition, multiplication, trigonometric functions,
etc.) In physics alone, such approaches have been applied successfully
to quantum systems7, non-linear and chaotic systems2,4, fluid
mechanics8, and astrophysics9, among others6.

A central assumption implicit in these approaches is that, given
data, it is always possible to identify the correct underlying model.
Here, we investigate the validity of this assumption. In particular,
consider a dataset D= ðyi,xiÞ

� �
, with i = 1,…,N, generated using the

closed-form model m*, so that yi =m*(xi, θ*) + ϵi with θ* being the

parameters of the model, and ϵi a random unbiased observation noise
drawn from the normal distribution with variance s2ϵ . The assumption
of Gaussian noise is standard in regression and symbolic regression
problems. In principle, one could assume other noise structures (for
example, multiplicative noise) or even more general likelihoods, but
these would be hard to justify in the context of regression and sym-
bolic regression/model discovery. The question we are interested in is:
Assuming thatm* can be expressed in closed form, when is it possible
to identify it as the true generating model among all possible closed-
form mathematical models, for someone who does not know the true
model beforehand? Note that our focus is on learning the structure of
the model m* and not the values of the parameters θ*, a problem that
has receivedmuchmore attention from the theoretical point of view10.
Additionally, we are interested in situations in which the dimension of
the feature space x 2 Rk is relatively small (compared to typical fea-
ture spaces inmachine learning settings), which is the relevant regime
for symbolic regression and model discovery.

To address the model-learning question above, we formulate the
problem of identifying the true generating model probabilistically,
and show that probabilistic model selection is quasi-optimal at
generalization, that is, at making predictions about unobserved data.
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This is in contrast to standard machine learning approaches, which, in
this case, are suboptimal in the regionof lowobservationnoise.We then
investigate the transition occurring between: (i) a learnable phase at low
observation noise, in which the true model can in principle be learned
from the data; and (ii) an unlearnable phase, in which the observation
noise is too large for the truemodel to be learned from the data by any
method. Finally, we provide an upper bound for the noise at which the
learnability transition takes place, that is, the noise beyond which the
true generating model cannot be learned by any method. This bound
corresponds to the noise atwhichmost plausible a priorimodels, which
we call trivial, becomemore parsimonious descriptions of the data than
the true generating model. Despite the simplicity of the approach, the
bound provides a good approximation to the actual transition point.

Results
Probabilistic formulation of the problem
The complete probabilistic solution to the problem of identifying a
model from observations is encapsulated in the posterior distribution
overmodelsp(m∣D). Theposterior gives theprobability that eachmodel
m=m(x, θ), with parameters θ, is the true generating model given the
dataD. Again, notice that we are interested on the posterior overmodel
structuresm rather thanmodel parameters θ; thus, we obtain p(m∣D) by
marginalizing p(m, θ∣D) over possible parameter values Θ

pðm∣DÞ=
Z

Θ
dθ pðm,θ∣DÞ

=
1

pðDÞ
Z

Θ
dθ pðD∣m,θÞ pðθ∣mÞ pðmÞ,

ð1Þ

where p(D∣m, θ) is the model likelihood, and p(θ∣m) and p(m) are the
prior distributions over the parameters of a given model and the
models themselves, respectively. The posterior over models can
always be rewritten as

pðm∣DÞ= exp �HðmÞ½ �
Z

, ð2Þ

with Z =pðDÞ=Pfmg exp �HðmÞ½ � and

HðmÞ= � lnpðD,mÞ

= � ln
Z

Θ
dθ pðD∣m,θÞ pðθ∣mÞ

� �
� lnpðmÞ: ð3Þ

Although the integral over parameters in Eq. (3) cannot, in general, be
calculated exactly, it can be approximated as5,11

HðmÞ ≈ BðmÞ
2

� lnpðmÞ, ð4Þ

where B(m) is the Bayesian information criterion (BIC) of the model11.
This approximation results from using Laplace’s method to integrate
the distribution p(D∣m, θ)p(θ∣m) over the parameters θ. Thus, the cal-
culation assumes that: (i) the likelihood p(D∣m, θ) is peaked around
θ* = argmaxθ pðD∣m,θÞ, so that it can be approximated by a Gaussian
around θ*; (ii) the prior p(θ∣m) is smooth around θ* so that it can be
assumed to be approximately constant within the Gaussian. Unlike
other contexts, in regression-like problems these assumptions are
typically mild.

Within an information-theoretical interpretation of model selec-
tion,HðmÞ is the description length, that is, the number of nats (or bits
if one uses base 2 logarithms instead of natural logarithms) necessary
to jointly encode the data and the model with an optimal encoding12.
Therefore, themostplausiblemodel—that is, themodelwithmaximum
p(m∣D)—has the minimum description length, that is, compresses the
data optimally.

The posterior in Eq. (2) can also be interpreted as in the canonical
ensemble in statistical mechanics, with HðmÞ playing the role of the
energy of a physical system, models playing the role of configurations
of the system, and the most plausible model corresponding to the
ground state. Here, we sample the posterior distribution over models
p(m∣D) by generating aMarkov chainwith theMetropolis algorithm, as
one would do for physical systems. To do this, we use the “Bayesian
machine scientist” introduced in ref. 5 (Methods). We then select,
among the sampled models, the most plausible one (that is, the max-
imum a posteriori model, the minimum description length model, or
the ground state, in each interpretation).

Probabilistic model selection yields quasi-optimal predictions
for unobserved data
Probabilistic model selection as described above follows directly (and
exactly, except for the explicit approximation in Eq. (4)) from the
postulates of Cox’s theorem13,14 and is therefore (Bayes) optimal when
models are truly drawn from thepriorp(m). Inparticular, theminimum
description length (MDL)model is themost compressive and themost
plausible one, and any approach selecting, from D, a model that is not
the MDL model violates those basic postulates.

We start by investigating whether this optimality in model selec-
tion also leads to the ability of the MDL model to generalize well, that
is, tomake accurate predictions about unobserved data.We show that
the MDL model yields quasi-optimal generalization despite the fact
that the best possible generalization is achieved by averaging over
models5, and despite the BIC approximation in the calculation of the
description length (Fig. 1). Specifically, we sample amodelm* from the
priorp(m) described in ref. 5 and in theMethods; for amodel notdrawn
from the prior, see Supplementary Text and Fig. S1. From this model,
we generate synthetic datasets D= ðyi,xiÞ

� �
, i = 1,…,N (where

yi =m*(xi, θ*) + ϵi and ϵi ~ Gaussian(0, sϵ)) with different number of
points N and different levels of noise sϵ. Then, for each dataset D, we
sample models from p(m∣D) using the Bayesian machine scientist5,
select the MDL model among those sampled, and use it to make pre-
dictions on a test dataset D0.

Because D0 is, like D, subject to observation noise, the irreducible
error is sϵ, that is, the root mean squared error (RMSE) of predictions
cannot be, on average, smaller than sϵ. As we show in Fig. 1, the pre-
dictions of theMDLmodel achieve this optimal prediction limit except
for small N and some intermediate values of the observation noise.
This is in contrast to standard machine learning algorithms, such as
artificial neural networks. These algorithms achieve the optimal pre-
diction error at large values of the noise, but below certain values of sϵ
the prediction error stops decreasing and predictions become dis-
tinctly suboptimal (Fig. 1).

In the limit sϵ→∞ of high noise, all models make predictions
whose errors are small compared to sϵ. Thus, the prediction error is
similar to sϵ regardless of the chosen model, which also means that
it is impossible to correctly identify the model that generated the
data. Conversely, in the sϵ→ 0 limit, the limiting factor for standard
machine learning methods is their ability to interpolate between
points in D, and thus the prediction error becomes independent of
the observation error. By contrast, because Eqs. (2)–(4) provide
consistent model selection, in this limit the MDL should coincide
with the true generating model m* and interpolate perfectly. This is
exactly what we observe—the only error in the predictions of
the MDL model is, again, the irreducible error sϵ. Therefore,
our observations show that probabilistic model selection leads to
quasi-optimal generalization in the limits of high and low
observation noise.

Phenomenology of the learnability transition
Next, we establish the existence of the learnable and unlearnable
regimes, and clarify how the transition between them happens. Again,
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we generate synthetic data D using a known model m* as in the pre-
vious section, and sample models from the posterior p(m∣D). To
investigate whether a model is learnable we consider the ensemble of
sampledmodels (Fig. 2); if nomodel in the ensemble is more plausible
than the true generating model (that is, if the true model is also the
MDLmodel), then we conclude that themodel is learnable. Otherwise,
the model is unlearnable because, lacking any additional information
about the generatingmodel, it is impossible to identify it; othermodels
provide more parsimonious descriptions of the data D.

To this end, we first consider the gap ΔHðmÞ=HðmÞ �Hðm*Þ
between the description length of each sampled model m and that of
the true generating modelm* (Fig. 2a). For low observation error sϵ, all
sampled models have positive gaps, that is, description lengths that
are longer than or equal to the truemodel. This indicates that themost
plausible model is the true model; therefore, the true model is learn-
able. By contrast, when observation error grows (sϵ ≳0.6 in Fig. 2a),
some of themodels sampled for some training datasetsD start to have
negative gaps, which means that, for those datasets, these models

Fig. 1 | Probabilistic model selection makes quasi-optimal predictions about
unobserved data. We select two models m*, whose expressions are shown at the
top of each column. a, b From eachmodel, we generate synthetic datasetsDwithN
points (shown, N = 100) and different levels of noise sϵ (shown, sϵ = 1). Here and
throughout the article, the values of the independent variables x1 and x2 are gen-
erated uniformly at random in [ − 2, 2]. Vertical lines show the observation error ϵi
for each point in D. For a model not drawn from the prior and data generated
differently, see Supplementary Fig. S1. c, d For each dataset D (with dataset sizes
N∈ {25, 50, 100, 200, 400}), we sample models from p(m∣D) using the Bayesian

machine scientist5, select the MDL model (maximum p(m∣D)) among those sam-
pled, and use thismodel tomake predictions on a test datasetD0, generated exactly
asD.We show the prediction rootmean squared error (RMSE) of theMDLmodelon
D0 as a function of N and sϵ. For comparison, we also show the predictions from an
artificial neural network (ANN, dotted lines; Methods). Since sϵ is the irreducible
error, predictions on the diagonal RMSE = sϵ are optimal. e, fWeplot the prediction
RMSE scaled by the irreducible error sϵ; optimal predictions satisfy RMSE/sϵ = 1
(dashed line).
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become more plausible than the true model. When this happens, the
true model becomes unlearnable. For even larger values of sϵ (sϵ > 2),
the true model is unlearnable for virtually all training sets D.

To better characterize the sampled models, we next compute
description length of themodel; that is, the termHMðmÞ= � lnpðmÞ in
the description length, which measures the complexity of the
model regardless of the data (Fig. 2b). For convenience we set an
arbitrary origin for HM ðmÞ so that HMðmcÞ=0 for the models
mc = argmaxmpðmÞ= argminmHM ðmÞ that are most plausible a priori,
which we refer to as trivial models; all other models have HMðmÞ > 0.
We observe that, for low observation error, most of the sampled
models aremore complex than the truemodel. Above a certain level of
noise (sϵ ≳ 3), however, most sampled models are trivial or very simple
models with HM ðmÞ ≈ 0. These trivial models appear suddenly—at
sϵ < 2 almost no trivial models are sampled at all.

Altogether, our analysis shows that for low enough observation
error the true model is always recovered. Conversely, in the opposite
limit only trivial models (those that are most plausible in the prior
distribution) are considered reasonable descriptions of the data.

Importantly, our analysis shows that trivial models appear suddenly as
one increases the level of noise, which suggests that the transition to
the unlearnable regime may be akin to a phase transition driven by
changes in the model plausibility (or description length) landscape,
similarly to what happens in other problems in inference, constraint
satisfaction, and optimization10,15.

To further probe whether that is the case, we analyze the transi-
tion in more detail. Our previous analysis shows that learnability is a
property of the training dataset D, so that, for the same level of
observation noise, some instances of D enable learning of the true
model whereas others do not. Thus, by analogy with satisfiability
transitions15, we define the learnability ρ(sϵ) as the fraction of training
datasets D at a given noise sϵ for which the true generating model is
learnable. In Fig. 3, we show the behavior of the learnability ρ(sϵ) for
different sizesN, for the twomodels in Fig. 1 (see Supplementary Fig. S1
for another model). Consistent with the qualitative description above,
we observe that the learnability transition occurs abruptly at a certain
value of the observation noise; the transition shifts towards higher
values of sϵ with increasing size of D.

Fig. 2 | Phenomenologyof the learnability transition.Using “Model 1” in Fig. 1, we
generate 40 different datasets D (with N = 100) for each observation noise sϵ. As
before, the values of the independent variables x1 and x2 are generated uniformly at
random in [ − 2, 2]. For each dataset, we sample models from the posterior p(m∣D)
and obtain the distribution of certain properties of the sampled models.
a Distribution of description length gaps ΔHðmÞ=HðmÞ �Hðm*Þ; each line corre-
sponds to a different dataset D. The true generating model has ΔHðmÞ=0, indi-
cated by a horizontal dashed line. Positive gaps correspond to models m that are

less plausible than the true generating model m*, and vice versa. When there is a
modelmwith negative gap for a givendatasetD, the truemodel is unlearnable from
that dataset because m* is not the most plausible model given the data.
b Distribution of model description lengthsHM ðmÞ= � lnpðmÞ for each dataset D.
TheHM ðm*Þ of the true generating model is indicated by a horizontal dashed line.
Without lost of generality, the HM ðmcÞ of the most plausible model a priori
mc = argmaxmpðmÞ, or trivial model, is set to HM ðmcÞ=0.
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Remarkably, the difficult region identified in the previous section,
in which prediction error deviates from the theoretical irreducible
error sϵ, coincides with the transition region. Therefore, our results
paint a picture with three qualitatively distinct regimes: a learnable
regime in which the true model can always be learned and predictions
about unobserved data are optimal; an unlearnable regime in which
the true model can never be learned but predictions are still optimal
because error is driven by observation noise and not by the model
itself; and a transition regime in which the truemodel is learnable only
sometimes, and inwhich predictions are, on average, suboptimal. This,
again, is reminiscent of the hard phase in satisfiability transitions and
of other statistical learning problems15–17.

Learnability conditions
Finally, we obtain an upper bound to the learnability transition point
by assuming that all the phenomenology of the transtion can be
explained by the competition between just two minima of the
description length landscape HðmÞ: the minimum corresponding to
the true model m*; and the minimum corresponding to the trivial
model mc that is most plausible a priori

mc = argmax
m

pðmÞ= argmin
m

HM ðmÞ: ð5Þ

As noted earlier,mc is such thatHM ðmcÞ=0 by our choiceof origin, and
for our choice of priors it corresponds to trivial models without any

Fig. 3 | Learnability transition and scaling. a, b For each of the two models in
Fig. 1, we represent the learnability ρ(sϵ), that is, the fraction of datasetsD for which
the truemodelm* is themost plausible one, and thus can be learned from the data.
Vertical lines are estimates of the learnability transitionpoint s ×ϵ fromEq. (8). c,dAs
in Fig. 1e, f, we represent the scaled prediction rootmean squared error (RMSE) for

the MDL model. The peak in the scaled RMSE coincides with the learnability tran-
sition point. e Learnability as a function of the scaled noise sϵ=s

×
ϵ for all learnability

curves (all values of N and both models). The gray region sϵ=s
×
ϵ >1 identifies the

unlearnable phase.
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operation, such as mðxÞ= const: or m(x) = x1. (Note that, although the
origin of descriptions lengths is not arbitrary, this choice is innocuous
as long as we are only concerned with comparisons between models.)
Below, we focus on one of these models mðxÞ= const:, but our argu-
ments (not the precise calculations) remain valid for any other choice
of prior and the corresponding mc.

As wehave also noted above, the truemodel is learnable when the
description length gapΔHðmÞ=HðmÞ �Hðm*Þ is strictly positive for all
models m ≠m*. Conversely, the true model m* becomes unlearnable
when ΔHðmÞ=0 for some model m ≠m*. As per our assumption that
the only relevant minima are those corresponding to m* and mc, we
therefore postulate that the transition occurs when the description
length gap of the trivial model becomes, on average (over datasets),
ΔHðmcÞ=0. In fact, when HðmcÞ≤Hðm*Þ the true model is certainly
unlearnable; but other models m could fullfill the condition
HðmÞ≤Hðm*Þ earlier, thus making the truemodel unlearnable at lower
observation noises. Therefore, the condition ΔHðmcÞ=0 yields an
upper bound to the value of the noise at which the learnability tran-
sition happens.We comeback to this issue later, but for nowwe ignore
all potential intermediate models.

Within the BIC approximation, the description length of each of
these two models is (“Methods” section)

Hðm*Þ= N
2

log 2πhϵ2iD + 1
� �

+
k* + 1
2

logN � logpðm*Þ ð6Þ

HðmcÞ= N
2

log 2π hϵ2iD + hδ2iD
� 	

+ 1
h i

+ logN � logpðmcÞ, ð7Þ

where k* is the number of parameters of the truemodel, δi =m
c
i �m*

i is
the reducible error of the trivialmodel, and the averages 〈⋯〉D are over
the observations i in D. Then, over many realizations of D, the transi-
tion occurs on average at

s ×ϵ =
hδ2i

pðmcÞ
pðm*Þ

� 	2
N
N

k*�1
N � 1

2
664

3
775
1=2

ð8Þ

where 〈δ2〉 is now the variance of m* over the observation
interval rather than in any particular dataset. For large N ≳ 100
and model description lengths of the true model such that
Δ*
M � HMðm*Þ �HM ðmcÞ∼Oð1Þ, the transition noise is well approxi-

mated by (“Methods” section)

s ×ϵ ≈
hδ2iN

2Δ*
M + ðk* � 1Þ logN

" #1=2

: ð9Þ

Therefore, since s ×ϵ diverges for N→∞, the true model is learnable for
any finite observation noise, provided that N is large enough (which is
just another way of seeing that probabilistic model selection with the
BIC approximation is consistent11).

In Fig. 3, we show that the upper bound in Eq. (8) is close to the
exact transition point from the learnable to the unlearnable phase, as
well as to the peak of the prediction error relative to the irreducible
error. Moreover, once represented as a function of the scaled noise
sϵ=s

×
ϵ , the learnability curves of both models collapse into a single

curve (Fig. 3e), suggesting that the behavior at the transition may be
universal. Additionally, the transition between m* and mc becomes
more abrupt with increasing N, as the fluctuations in 〈δ〉D become
smaller. If this upper bound became tighter with increasing N, this
would be indicative of a true, discontinuous phase transition between
the learnable and the unlearnable phases.

To further understand the transition and further test the validity
of the assumption leading to the upper bound s ×ϵ , we plot the average
description length (over datasets D) of the MDLmodel at each level of
observation noise sϵ (Fig. 4). We observe that the description length of
theMDLmodel coincideswith the description lengthHðm*Þ of the true
model below the transition observation noise, andwith the description
length HðmcÞ of the trivial model above the transition observation
noise. Around s ×ϵ , and especially for smaller N, the observed MDL is
lower than both Hðm*Þ and HðmcÞ, suggesting that, in the transition
region, a multiplicity of models (or Rashomon set18) other thanm* and
mc become relevant.

Discussion
The bidirectional cross fertilization between statistical learning theory
and statistical physics goes back to the 1980’s, when the paradigm in
artificial intelligence shifted from rule-based approaches to statistical
learning approaches19. Nonetheless, the application of statistical phy-
sics ideas and tools to learning problemshas so far focused on learning
parameter values17,20–22, or on specific problems such as learning
probabilistic graphical models and, more recently, network
models23–27. Thus, despite the existence of rigorous probabilistic
model selection approaches28, the issue of learning the structure of
models, and especially closed-form mathematical models, has
received much less attention from the statistical physics point of
view10.

Our approach shows that, once the model-selection problem is
formalized in such a way that models can be represented and enum-
erated, and their posteriors p(m∣D) can be estimated and sampled in
the same way we do for discrete configurations in a physical system5,
there is no fundamental difference between learning models and
learning parameters (except, perhaps, for the discreteness of model
structures). Therefore, the same richness that has been described at
length in parameter learning can be expected in model learning,
including the learnability transition that we have described here, but
perhaps others related, for example, to the precise characterization of
the description length landscape in the hard phase in which general-
ization is difficult. We may also expect model-learning and parameter-
learning transitions to interact. For example, there are limits to our
ability to learn model parameters, even for noiseless data17,29,30; in this
unlearnable phaseof theparameter learningproblem, it seems that the
true model should also be unlearnable, even in this noiseless limit,
something we have not considered here. Our findings are thus the first
step in the characterization of the rich phenomenology arising from
the interplay between data size, noise, and parameter and model
identification from data.

Our results on closed-form mathematical models may also open
the door to addressing some problems of learning that have so far
remaineddifficult to tackle. Indeep learning, for example, thequestion
of how many training examples are necessary to learn a certain task
with precision is still open19, whereas, as we have shown, in our context
of (closed-form) model selection the answer to this question arises
naturally.

Finally, we have shown that, when data are generated with a
(relatively simple) closed-form expression, probabilistic model selec-
tion generalizes quasi-optimally, especially in the ideal regime of low
observation noise. This is in contrast, as wehave seen, towhat happens
in this case with some machine learning approaches such as artificial
neural networks. Conversely, it would be interesting to understand
how expressive closed-formmathematical models are, that is, to what
extent they are able to describe and generalize when data are not
generated using a closed-form mathematical model (for example, for
the solution of a differential equation that cannot be expressed in
closed form). We hope that our work encourages more research on
machine learning approaches geared towards learning such inter-
pretable models18, and on the statistical physics of such approaches.
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Fig. 4 |Modeldescription length and learnability conditions. For eachof the two
models (a, c, e, g, iModel 1; b, d, f, h, j, Model 2) and each size N (a, b, N = 25; c, d,
N = 50; e, f,N = 100; g,h,N = 200; i, j,N = 400), we plot thedescription length of the
MDL model identified by the Bayesian machine scientist, averaged over 40 reali-
zations of the training dataset D (colored symbols). For each model and N, we also
plot the theoretical description length of the true generating model m* (Eq. (6);

solid black line) and of the trivial modelmc (Eq. (7); dotted black line). As in Fig. 3,
colored vertical lines are estimates of the learnability transition point at which
Hðm*Þ=HðmcÞ (Eq. (8)). Right of this point (gray region; unlearnable phase)
Hðm*Þ > HðmcÞ, so the true model cannot be learned, from the data alone, by any
method.
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Methods
Prior over models
The probabilistic formulation of themodel selection problemoutlined
in Eqs. 1–4 requires the choice of a prior distribution p(m) overmodels
—although the general, qualitative results described in the body of the
text do not depend on a particular choice of prior. Indeed, no matter
how priors are chosen, somemodelmc = argmaxmpðmÞ (or, at most, a
finite subset ofmodels, since uniformpriors cannot be used5) different
from the true generating model m* will be most plausible a priori, so
the key arguments in the main text hold.

However, the quantitative results must be obtained for one spe-
cification of p(m). Here, as in the previous literature5,8, we choose p(m)
to be the maximum entropy distribution that is compatible with an
empirical corpus of mathematical equations5. In particular, we impose
that the mean number 〈no〉 of occurrences of each operation o 2
f+ ,*, exp , . . .g per equation is the same as in the empirical corpus; and
that the fluctuations of these numbers hn2

oi are also as in the corpus.
Therefore, the prior is

pðmÞ / exp
X
o2O

�αonoðmÞ � βon
2
oðmÞ
 �" #

, ð10Þ

where O= f+ ,*, exp , . . .g, and the hyperparameters αo≥0 and βo≥0
are chosen so as to reproduce the statistical features of the empirical
corpus5. For this particular choice of prior, the models
mc = argmaxmpðmÞ are those that contain no operations at all, for
examplemc = const:; hence the use of the term trivial to denote these
models in the text.

Sampling models with the Bayesian machine scientist
For a given dataset D, each model m has a description length HðmÞ
given by Eq. (4). The Bayesian machine scientist5 generates a Markov
chain of models {m0,m1,…,mT} using the Metropolis algorithm as
described next.

Each model is represented as an expression tree, and each new
modelmt+1 in the Markov chain is proposed from the previous onemt

by changing the corresponding expression tree: changing an opera-
tion or a variable in the expression tree (for example, proposing a new
modelmt+1 = θ0 + x1 frommt = θ0*x1); adding a new term to the tree (for
example, mt+1 = θ0*x1 + x2 from mt = θ0*x1); or replacing one block of
the tree (for example,mt + 1 =θ0* expðx2Þ frommt = θ0*x1) (see ref. 5 for
details). Once a newmodelmt+1 is proposed frommt, the newmodel is
accepted using the Metropolis rule.

Note that the only input to the Bayesian machine is the observed
dataD. In particular, the observational noise sϵ is unknown andmustbe
estimated, via maximum likelihood, to calculate the Bayesian infor-
mation criterion B(m) of each model m.

Artificial neural network benchmarks
For the analysis of predictions on unobserved data, we use as bench-
marks the following artificial neural network architectures and training
procedures. The networks consist of: an input layer with two inputs
corresponding to x1 and x2; (ii) four hidden fully connected feed-
forward layers, with 10 units each and ReLU activation functions; and
(iii) a linear output layer with a single output y.

Each network was trained with a dataset D containing N points,
just as in the probabilistic model selection experiments. Training
errors and validation errors (computed on an independent set) were
calculated, and the training process stopped when the validation error
increased, on average, for 100 epochs; this typically entailed training
for 1000–2000 epochs. This procedure was repeated three times, and
themodel with the overall lowest validation error was kept for making
predictions on a final test set D0. The predictions on D0 are those
reported in Fig. 1.

Model description lengths
The description length of a model is given by Eq. (4), and the BIC is

BðmÞ= � 2 lnLðmÞ∣θ̂ + ðk + 1Þ lnN, ð11Þ

where LðmÞ∣θ̂ =pðD∣m,θ̂Þ is the likelihood of the model calculated
at the maximum likelihood estimator of the parameters,
θ̂= argmaxθpðD∣m,θÞ, and k is the number of parameters in m. In a
model-selection setting, one would typically assume that the devia-
tions of the observed data are normally distributed independent
variables, so that

LðmÞ=
Y
i

1ffiffiffiffiffiffiffiffiffiffiffiffi
2πsy2

q exp �ðyi �miÞ2
2sy2

" #

=
1

ð2πsy2ÞN=2
exp �

X
i

ðyi �miÞ2
2sy2

" # ð12Þ

wheremi ≡m(xi), and sy is the observed error, which in general differs
from sϵwhenm ≠m*. We can obtain themaximum likelihood estimator
for sy

2, which gives sy
2 = 1

N

P
iðyi �m*

i Þ
2
, and replacing into Eqs.

(4)–(12) gives

HðmÞ= N
2
ln 2πsy

2 +
N
2
+
k + 1
2

lnN � lnpðmÞ: ð13Þ

For m=m* we have that sy
2 = 1

N

P
iðyi �m*

i Þ
2
= hϵ2iD. For any other

modelm, wedefine for eachpoint thedeviation from theoriginalmodel
δi : =mi �m*

i so that sy
2 = 1

N

P
iðϵi � δiÞ2 = hϵ2iD + hδ2iD � 2hδϵiD.

Plugging these expressions into Eq. (13), we obtain the expressions in
Eqs. (6) and (7).

Approximation of s ×
ϵ for large N

Defining x = 1/N in Eq. (8) and using the Puiseux series expansion

a2x 1
x

 �bx

= 1 + x 2 loga+b log
1
x

 �
+Oðx2Þ ð14Þ

around x = 0, we obtain Eq. (9).

Data availability
We did not use any data beyond the synthetically generated data
described in the manuscript.

Code availability
The code for the Bayesian machine scientist is publicly available as a
repository from the following URL: https://bitbucket.org/rguimera/
machine-scientist/.
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