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ABSTRACT

Motivation: The lack of new antimicrobials, combined with increas-

ing microbial resistance to old ones, poses a serious threat to public

health. With hundreds of genomes sequenced, systems biology

promises to help in solving this problem by uncovering new drug

targets.

Results: Here, we propose an approach that is based on the

mapping of the interactions between biochemical agents, such as

proteins and metabolites, onto complex networks. We report that

nodes and links in complex biochemical networks can be grouped

into a small number of classes, based on their role in connecting

different functional modules. Specifically, for metabolic networks,

in which nodes represent metabolites and links represent enzymes,

we demonstrate that some enzyme classes are more likely to be

essential, some are more likely to be species-specific and some are

likely to be both essential and specific. Our network-based enzyme

classification scheme is thus a promising tool for the identification of

drug targets.

Contact: rguimera@northwestern.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Several groups have stressed the threat that the lack of

development of new antimicrobial drugs poses to public

health (Bax et al., 2000; Norrby et al., 2005; Spellberg et al.,

2004). With the ever-increasing amount of biological data

available, the promise of systems biology is to help in allevia-

ting this problem by uncovering new drug targets (Nikolsky et

al., 2005). A promising approach in this regard is to map the

interactions between biochemical agents—such as proteins and

metabolites—onto complex networks (Amaral and Ottino,

2004; Newman, 2003), and then study the properties of these

networks to gain insight into key biological processes.
In spite of some efforts to uncover new drug targets using this

approach (Jeong et al., 2001; Klamt and Gilles, 2004; Palumbo

et al., 2005; Rahman and Schomburg, 2006), one may argue

that the results have, so far, been modest. A potentially

important reason for this is that the structure of complex

biochemical networks is typically characterized in terms of

global properties (Jeong et al., 2000, 2001; Ma and Zeng, 2003;

Tanaka, 2005; Wagner and Fell, 2001). In particular, a lot of

attention has been paid to the degree distribution of the nodes

in these networks, i.e. the distribution of number of protein

interactions per protein in the proteome (Jeong et al., 2001) and

the distribution of the number of other metabolites into which a

certain metabolite can be transformed through metabolic

reactions in the metabolome (Jeong et al., 2000; Ma and

Zeng, 2003; Ravasz et al., 2002; Tanaka, 2005; Wagner and

Fell, 2001). The caveat is that global quantities are appropriate

only when one of two very strict conditions is fulfilled: (i) the

network lacks a modular structure (Guimerà and Amaral,

2005b; Han et al., 2004; Hartwell et al., 1999; Holme et al.,

2003; Ravasz et al., 2002), or (ii) the network has a modular

structure but (a) all functional modules were formed according

to the same mechanisms, (b) all functional modules have similar

properties and (c) the interface between functional modules is

statistically similar to the bulk of the modules, except for the

density of links.

To our knowledge, no real biochemical network fulfills

either of the two conditions above, which implies that global

properties are unlikely to provide insight into the mechanisms

responsible for the formation and evolution of these

networks (Guimerà et al., 2007), or to facilitate the discovery

promising therapeutic targets. Alternative approaches that

take into consideration the modular structure (Danon et al.,

2005; Girvan and Newman, 2002; Guimerà and Amaral, 2005a;

Newman and Girvan, 2004) of real-world complex networks

are, thus, necessary. One such approach is the cartographic

approach (Guimerà and Amaral, 2005a, b), which enables one

to group nodes into a small number of roles according to their

pattern of intra- and inter-module connections.
Recently, we demonstrated that the role of a node conveys

significant information about the importance of the node,

and about the evolutionary pressures on it (Guimerà and

Amaral, 2005a, b). Here, we report that in metabolic

networks—in which nodes represent metabolites and links

represent enzymes—some link types, i.e. some enzyme classes,

are more likely to be essential, some are more likely to be

species-specific and some are likely to be both essential

and specific. Our network-based enzyme classification scheme

is thus a promising tool for the identification of drug targets.*To whom correspondence should be addressed.
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Intriguingly, we also find that some crucial enzymes are not

backed up by alternative pathways.

2 METHODS

2.1 Description of the datasets

To build the 18 metabolic networks (Table 1 and Figs 1 and 3) from the

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Goto et al.,

1998), we use the data compiled in the LIGAND section (Kanehisa and

Goto, 2000) of the database (as of March–April 2006). To remove

carrier metabolites (such as water or ATP), we determine the main

reactant pairs in each reaction (Kanehisa et al., 2006). Reactant pairs

are pairs of metabolites that have atoms or atom groups in common on

both sides of a chemical reaction formula. In contrast with cofactor

pairs and leave pairs, main reactant pairs correspond to the most

relevant biochemical transformations in a reaction. Main substrates

and products are listed in the reaction_main. lst file. We connect all the

main substrates to all the main products in a reaction, but not

substrates to substrates or products to products.

For each organism, we only take into account reactions that are

catalyzed by an enzyme that the organism is able to synthesize, and

reactions that are explicitly classified as spontaneous. We obtain the

enzymes necessary for each reaction from the reaction file, and the

enzymes synthesized by each organism from the organism databases in

KEGG.

For our analysis of Escherichia coli and Helicobacter pylori (Figs 2

and 4), we use the set of reactions compiled by B. Ø. Palsson’s Systems

Biology Research Group, at UCSD (Reed et al., 2003; Thiele et al.,

2005). To obtain the modules and the roles of each metabolite in the

flux balance analysis (FBA) reconstruction of these metabolic network,

we need to remove carrier metabolites from the metabolic network.

To this end, we automatically match each reaction in the FBA database

to a reaction in the KEGG database, and use the LIGAND section of

the KEGG (as of November 2005) to identify the main reactant pairs

in the reaction. We find such a match for �80% of the reactions listed

in the FBA databases. For the remaining reactions, we remove carrier

metabolites manually.

2.2 Module identification

For a given partition of the nodes of a network into modules, the

modularity M of this partition is (Guimerà et al., 2004; Newman and

Girvan, 2004)

M �
XNM

s¼1

ls
L
�

ds
2L

� �2
" #

, ð1Þ

where NM is the number of modules, L is the number of links in the

network, ls is the number of links between nodes in module s, and ds is

the sum of the connectivities (degrees) of the nodes in module s. The

modularity of a partition is high if the number of within-module links

is much larger than expected from chance alone.

The objective of a module identification algorithm is thus to find the

partition with the largest modularity. We use simulated annealing to

find the partition with the largest modularity (Guimerà and Amaral,

2005a, b; Guimerà et al., 2004). Danon et al. (2005) have recently shown

that this method is the most accurate method in the literature to date.

2.3 Role definition

Nodes with similar roles are expected to have similar relative within-

module connectivity (Guimerà and Amaral, 2005a, b). If �i is the

number of links of node i to other nodes in its module si, �si is the

average of � over all the nodes in si and ��si is the standard deviation of

� in si, then we define the within-module degree z-score as

zi ¼
�i � �si
��si

: ð2Þ

Nodes in other modules

Peripheral nodes
Ultraperipheral nodes

Satellite connectors
Provincial hubs
Connector hubs

Tetrahydrofolate

Dglucose
1–phosphate Glucose

Dihydrofolate

dTMP

Fig. 1. Modularity and roles in the studied metabolic networks. In

Table 1, we show the number of nodes and links in each network, the

modularity M of the best partition obtained using simulated annealing,

and the 95% confidence interval for the modularity Mrand of the

randomizations of the network (Guimerà et al., 2004) (see Methods

Section). All networks display a modularity that is significantly larger

than that of their corresponding randomizations, which demonstrates

that all the networks are truly modular. In the diagram, we show a

portion of the FBA reconstruction of the metabolic network of E.coli

(Reed et al., 2003). We depict nodes from five typical modules (colored)

as well as the neighbors of these nodes that do not belong to any of the

five modules (white). The different shapes of the colored nodes

correspond to different roles.

Table 1.

Species Nodes Links M 95% confidence

interval Mrand

A.fulgidus 303 366 0.813 0.736–0.756

A.pernix 300 387 0.797 0.699–0.723

M.jannaschii 223 277 0.813 0.714–0.726

P.aerophilum 335 421 0.811 0.727–0.735

P.furiosus 302 384 0.813 0.706–0.734

S.solfataricus 367 455 0.813 0.724–0.748

B.subtilis 649 863 0.815 0.718–0.730

E.coli 739 1009 0.810 0.705–0.717

F.nucleatum 378 473 0.816 0.726–0.742

H.pylory 360 438 0.837 0.734–0.758

M.leprae 451 578 0.814 0.722–0.742

T.elongatus 448 546 0.830 0.743–0.767

A.thaliana 607 792 0.825 0.722–0.734

C.elegans 431 569 0.818 0.706–0.722

H.sapiens 792 1056 0.842 0.721–0.733

P.falciparum 280 363 0.815 0.696–0.720

S.cerevisiae 570 776 0.814 0.702–0.714

S.pombe 503 664 0.827 0.715–0.727
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The within-module degree z-score measures how ‘well-connected’ node i

is to other nodes in the module.

Different roles can also arise because of the connections of a node to

modules other than its own (Guimerà and Amaral, 2005a, b). We define

the participation coefficient Pi of node i as

Pi ¼ 1�
XNM

s¼1

�is
ki

� �2

ð3Þ

where �is is the number of links of node i to nodes in module s, and ki is

the total number of links of node i. The participation coefficient of a

node is therefore close to one if its links are uniformly distributed

among all the modules and zero if all its links are within its own

module.

We classify as non-hubs those nodes that have low within-module

degree (z < 2:5). Depending on the amount of connections they have on

other modules, non-hubs are further subdivided into (Guimerà and

Amaral, 2005a, b): (R1) ultra-peripheral nodes, i.e. nodes with all their

links within their own module (P � 0:05); (R2) peripheral nodes, i.e.

nodes with most links within their module (0:05 < P � 0:62); (R3)

satellite connectors, i.e. nodes with a high fraction of their links to other

modules (0:62 < P � 0:80) and (R4) kinless nodes, i.e. nodes with links

homogeneously distributed among all modules (P > 0:80). We classify

as hubs those nodes that have high within-module degree (z � 2:5).

Similar to non-hubs, hubs are divided according to their participation

coefficient into: (R5) provincial hubs, i.e. hubs with the vast majority of

links within their module (P � 0:30); (R6) connector hubs, i.e. hubs with

many links to most of the other modules (0:30 < P � 0:75) and (R7)

global hubs, i.e. hubs with links homogeneously distributed among

all modules (P > 0:75).
Note that, since we use a stochastic module identification algorithm,

small differences do exist between different partitions of the network.

Nevertheless, results are highly consistent (Guimerà and Amaral,

2005a, b), so that by obtaining 100 quasi-optimal partitions, we can

estimate the likelihood that a link is of a certain type.
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Fig. 2. Link type indispensability and conservation for E.coli (left) andH.pylori (right). (A) Distribution of link types. The higher the number of links

of a certain type, the more reliable the estimation of the corresponding indispensability. Link types represented by fewer than five links (dashed line)

are not considered significant and are therefore disregarded in the following analysis. (B) Median indispensability as a function of link type for

different media (see Methods Section for the definition of the media; ‘Minimum medium +20% uptake’ indicates to a random medium with a

fraction f=0.20 of all possible uptake fluxes added to the minimum uptake fluxes). Note that, since we consider 100 different partitions of each

metabolic network, the same link can contribute to more than one link type. Regardless of the medium considered (see Methods Section), most link

types in E.coli have a median close to zero, which means that about half of the links of those types can be removed without significantly altering

the growth rate. In contrast, links of type R2–R3, R3–R3 and R3–R6, have a significantly higher median indispensability (I �1.0 for the glucose

medium and I �0.45 for richer media with f=0.20). This means that, when removed, at least half of the links of these types have a markedly negative

effect on the growth rate. Results for H.pylori are noisier due to the smaller total number of reactions and to the higher average essentiality.

Remarkably, though, links of type R2–R3 continue to be the most essential in all media considered. (C) Percentage of links in E.coli andH.pylori that

are lost in humans. We call a link lost in humans if none of the proteins catalyzing the link have a significantly similar match in humans [we consider

two proteins significantly similar when the expectation value returned by BLAST (Altschul et al., 1997) is smaller than 10�2]. The lowest ratios occur

for links involving global hub metabolites (R6) and, as hypothesized, links of type R2–R3 do not have a significantly lower than average loss rate.
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2.4 Network randomization and statistical models

We use two different network randomization schemes. To assess the

significance of the modular structure of a network (Fig. 1), we

randomize all the links in the network while preserving the degree of

each node. To uniformly sample all possible networks, we use the

Markov-chain Monte Carlo switching algorithm (Maslov and Sneppen,

2002; Itzkovitz et al., 2004). In this algorithm, one repeatedly selects

pairs of links and swaps one of the ends of the links.

For the analysis of the over- and under-representation of links

between pairs of roles, it is crucial to preserve not only the degree

of each node, but also the modular structure of the network and the role

of each node. Therefore, we restrict the Markov-chain Monte Carlo

switching algorithm to pairs of links that connect nodes in the same pair

of modules. In other words, we apply the Markov-chain Monte Carlo

switching algorithm independently to links whose ends are in modules 1

and 1, 1 and 2 and so forth for all pairs of modules. This method

guarantees that, with the same partition as the original network,

the modularity of the randomized network is the same as that

of the original network (since the number of links between each pair

of modules is unchanged) and that the role of each node is also

preserved.

2.5 Flux balance analysis and link indispensability

Flux balance analysis (FBA) (Edwards and Palsson, 2000a) enables us

to computationally estimate metabolic fluxes in an organism. FBA is

based on the idea that metabolic fluxes producing and consuming a

certain metabolite must, in the steady state, balance each other.

Additionally, some amounts of certain metabolites can be obtained

from or excreted to the extracellular medium. These considerations

impose a set of linear constraints on the metabolic fluxes. One can

further assume that, among all possible flux solutions satisfying all the

constraints, the one realized in nature is the one that maximizes the

growth rate of the organism. With these assumptions, the problem of

finding the flux distribution becomes a linear programming problem,

which can be solved using standard numerical techniques (Winston and

Venkataramanan, 2002).

For our analysis, we use the set of reactions compiled for E.coli

(Reed et al., 2003) and H.pylori (Thiele et al., 2005). In our simulations
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calculate the number rij of links between nodes belonging to roles i

and j, and compare this number to the number Rij of such links in a

properly randomized network (see Methods Section). Rij is normally

distributed, so we use the z-score, zij ¼ ðrij � hRijiÞ=ð
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Þ, to

obtain a profile of over- and under-representation of link types. The

brackets h. . .i denote an average over 100 randomizations of the

network (see Methods Section). (A) Average z-score for the abundance

of each link type for archaea, bacteria and eukaryotes. (B) Average

z-score for the abundance of each link type for all the species

considered. The shaded region in panel (B) represents the 95%

confidence interval for the random network expectation: points outside

this region indicate statistically significant over- or under-represented

link types.
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Fig. 4. In silico analysis of gene indispensability. We plot the

distribution of growth rates for mutant (gray) and wild type (black

line) E.coli, obtained with FBA from an ensemble of 10 000 random

media (see Methods Section). (A) Mutant �icd in very rich random

media ( f=0.80). The icd gene codes for the enzyme isocitrate

dehydrogenase, which reversibly transforms isocitrate into

2-oxoglutarate (this link has a high probability of being of type

R2–R3) and is listed as non-essential both in the PEC database and by

Gerdes et al. (2003). Although FBA confirms that the mutant is always

viable (g>0), it also shows that its growth rate is significantly smaller

than the growth rate of the wild type, which would render the mutant

inviable in most selective environments. (B) Mutant �glmS in rich

random media ( f=0.50). The glmS gene codes for the enzyme that

mediates the transformation of L-glutamine into glucosamine-6P

(which is of type R2–R3 with a high probability), and is reported to

be non-essential in the PEC database and essential by Gerdes et al.

(2003). FBA shows that the mutant has a growth rate very similar to the

growth rate of the wild type in 95.4% of the media, but is inviable

(g=0) in 4.6% of the media.
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of gene deletions, we use ensembles of random media that are built as

follows. A minimal medium is defined for each species (Reed et al.,

2003; Thiele et al., 2005) (the E.coli minimal medium contains

oxygen to simulate aerobic conditions). To the minimal medium, we

add a randomly selected fraction f of all possible uptake fluxes, which

are set to a maximum of 10 mmol/g h. Each random medium is

evaluated 200 times, each time with a different selection of the uptake

fluxes. Additionally, for E.coli we simulate a glucose medium, which

consists of the minimal medium plus a glucose uptake rate of up to

10 mmol/g h.

Following the work of Edwards and Palsson, (2000b), we define the

indispensability of a link as the ratio between the growth rate gB of the

mutant and the growth rate g of the wild type organism. In particular,

the indispensability I is defined as

I ¼ 1�
g�
g
: ð4Þ

3 RESULTS

3.1 Functional modules and metabolite roles in

metabolic networks

In a metabolic network, each node represents a metabolite, and
two metabolites are connected if there is a biochemical reaction

that transforms one into the other, so that, in general, links

represent reactions and the enzymes catalyzing them. However,
a single link may correspond to several parallel reactions and/or

enzymes (if distinct reactions transform one metabolite into
the other and/or if different enzymes are involved in such

transformation). Moreover, a single reaction may correspond

to different links (if there is more than one reactant or product),
while a few reactions occur spontaneously and therefore have

no associated enzymes.
We start by quantifying the modular structure of the

metabolic network for 18 different organisms obtained from
the KEGG database (Goto et al., 1998; Kanehisa and Goto,

2000) (see Methods Section). We use simulated annealing to
find the partition of the network into modules that maximizes

the modularity (Guimerà and Amaral, 2005b; Guimerà et al.,

2004) (see Methods Section), and assess the significance of the
modular structure of each network by comparing it to a large

number of randomizations of the same network (Guimerà
et al., 2004) (Fig. 1). We find that all networks have a

significant modular structure.
Next, we determine the role of each node (see Methods

Section). In our cartography, we classify nodes into seven
roles according to their pattern of inter- and intra-module

connections (Guimerà and Amaral, 2005a, b) (Fig. 1): (R1)

ultra-peripheral nodes, (R2) peripheral nodes, (R3) satellite
connectors, (R4) kinless nodes, (R5) provincial hubs, (R6)

connector hubs and (R7) global hubs. Similarly, links can
be classified in several types according to the roles of the nodes

they connect. For example, R3–R5 links connect satellite
connectors to provincial hubs. For simplicity, and because

roles R4 and R7 rarely occur in real complex networks

(Guimerà and Amaral, 2005a, b), we focus on roles R1,
R2, R3, R5 and R6, and on the links connecting nodes with

these roles.
We surmise that links of different types in the network

correspond to enzymes with different functions and importance

in the metabolism. Additionally, because metabolites with

certain roles are significantly conserved across species (espe-

cially satellite connectors and connector hubs) while others are

not (Guimerà and Amaral, 2005b), links of certain types are

more likely to be species-specific.

3.2 Reactions with the highest median indispensability

involve satellite connector metabolites

These considerations suggest a novel approach to identify

promising drug targets. Indeed, by considering links of certain

types, we should be able to identify enzymes that are

indispensable for an organism but not needed by other

organisms. Given that nodes with roles R3 and R6 are highly

conserved across organisms, we hypothesize that links of types

R3–R3, R3–R6 and R6–R6 will be, in general, essential to an

organism. These links are, however, likely to be non-specific.

In contrast, links connecting highly conserved metabolites (R3

or R6) to less conserved metabolites (e.g. R2) may still be

essential because of the conserved end, and specific because of

the non-conserved end. These link types thus appear to be

natural candidates for drug targets.
To investigate this possibility, we analyze in depth the

metabolic network of two bacteria: E.coli and H.pylori (the

human pathogen responsible for gastritis and peptic ulcer

disease). We select these two organisms because one can use

FBA to estimate the fluxes of each of the reactions in their

metabolism (Edwards and Palsson, 2000a; Reed et al., 2003;

Thiele et al., 2005). Importantly, FBA also enables us to

computationally test the effect of gene deletions that result in a

specific reaction not taking place (Edwards and Palsson, 2000a;

Thiele et al., 2005).

We analyze systematically the effect of removing links

from the metabolic networks of E.coli and H.pylori, i.e. we

simulate the removal of all enzymes catalyzing the reactions

connecting a certain pair of metabolites (Fig. 2). We quantify

the effect of a link deletion by the indispensability I, which

measures the relative difference between the growth rate of the

mutant and that of the wild type (see Methods Section): a link

with I¼ 0 can be removed without affecting the growth rate,

whereas a link with I¼ 1 is indispensable for the survival of the

organism.
We find that for all types of links there are instances of high

indispensability. Our results indicate, however, that certain link

types have a significantly higher likelihood of being indis-

pensable than others (Fig. 2B), which confirms that our node

and link classification scheme captures important biological

information. In particular, we find that the links with the

highest indispensability in both E.coli and H.pylori involve

satellite connector metabolites (R3). Satellite connectors are

metabolites that, despite participating in a relatively small

number of biochemical reactions, bridge several different

modules. The finding that links involving satellite connectors

have high median indispensability may thus account for the

high conservation rate of satellite connectors reported earlier

(Guimerà and Amaral, 2005b): Since many reactions involving

satellite connectors are indispensable, it is unlikely that a

mutation causing the loss of the ability to process these

metabolites results in a viable organism.

R.Guimerà et al.
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3.3 High indispensability link types are not

over-represented in the metabolism

Biological systems are considered mutationally robust if they

are able to function even after genetic mutations occur.
Mutational robustness through redundancy and the so-called
distributed robustness are thought to provide an evolutionary

advantage to organisms, which would explain the pervasiveness
of robustness in biological systems (Wagner, 2005). Within this
context, however, our findings on link indispensability are

somewhat puzzling: some links in the metabolism are highly
fragile and the these links often involve satellite connector

metabolites, which seems to contradict the hypothesis that
fragile links are random evolutionary ‘accidents’.
A relevant question is, thus, whether: (i) evolution tries to

provide backups for links in link types that are likely to be
fragile, however it cannot backup all of these links so that those
link types are still more fragile than one would expect, or (ii)

fragile link types are fragile and (or because) evolution does not
back them up. To address this question quantitatively, we

consider the FBA reconstructions for E.coli and H.pylori as
well as the KEGG reconstructions for these and other bacteria,
archaea and eukaryotes. For each network, we obtain the role-

to-role connectivity profiles by computing the number rij of
links between nodes belonging to roles i and j, and comparing

this number to the number Rij of such links that are expected to
appear purely by chance (Fig. 3, see Methods Section and
Supplementary Fig. S1).

We find that the role-to-role connectivity profiles are con-
sistent across domains, which indicates that the profiles are a
result of the fundamental tasks that all metabolic networks need

to carry out, and not of the particularities of each metabolic
network. Remarkably, we also find that the most indispensable

link types (R2–R3, R3–R3, and R3–R6) are not significantly or
consistently over-represented in the 18 organisms we consider
(Fig. 3). This result seems to indicate that fragile link types are

fragile and (or because) evolution does not back them up.
Although we do not have a definite theory to understand this

finding, we put forward two plausible explanations, both of them

closely connected to the modular structure of metabolic
networks. One possibility is that satellite connectors have

chemical properties that make them unique in their ability to
bridge two or more modules whose metabolites have, otherwise,
little in common. In this case, it would be impossible for organ-

isms to develop alternative pathways. A second hypothesis is that
some ‘fragile’ links between modules provide a net evolutionary
advantage, even at the price of making the metabolism less

robust. This advantage may arise from the fact that fragile links
between modules (i.e. those that do not have backups) enable

some degree of module independence and can act as system-level
regulation points: a small change in the fluxes through these links
can reshape the global distribution of the metabolic fluxes, and

can switch on and off whole modules (for similar ideas in
neuroscience, (Hilgetag and Kaiser, 2004; Sporns et al., 2000)).

3.4 Enzymes connecting peripheral metabolites and

satellite connectors are promising drug targets

Besides posing interesting fundamental questions about the

evolution of metabolism, our analysis also opens the door

for novel approaches to exploit the information hidden in
metabolic networks. We have established that, at least in E.coli
and H.pylori, biochemical reactions involving satellite-connec-

tor metabolites are particularly vulnerable. These reactions
could, therefore, be of great importance to metabolic engineer-
ing and be natural targets for drugs.

Enzymes connecting peripheral metabolites and satellite
connectors (R2–R3) seem the most promising as drug targets,
given that peripheral metabolites (R2) are not highly conserved

across species (Guimerà and Amaral, 2005b). This means that it
should be possible to find vulnerable and species-specific links
of type R2–R3 in pathogens. To investigate this possibility,

we study the conservation in humans of the enzymes
that correspond to different types of links in E.coli and
H.pylori (Fig. 2C). We find that, as hypothesized, the most

conserved enzymes correspond to links involving connector
hubs (R6), and that enzymes corresponding to R2–R3 links are

not significantly more conserved than enzymes of types not
involving R6 nodes.

4 CONCLUSION

As we have shown, FBA does predict that enzymes of types
R2–R3, R3–R3 and R3–R6 have greater median indispensa-

bility than other enzyme types. The true test of our predic-
tions, however, will have to come from new experimental

studies. New experiments are necessary because two important
aspects reduce the usefulness of existing system-level databases
on gene essentiality (Gerdes et al., 2003; Thiele et al., 2005)

(Fig. 4).
The first limitation of existing databases is that essentiality is

assumed to be a binary variable, i.e. either a gene is considered

to be essential or it is considered to be non-essential. This
simplification overlooks the fact that the absence of certain
genes in a mutant may severely reduce its growth rate, which

would render the mutant inviable in selective environments
(Fig. 4A). Concretely, a host is a selective environment because
of the immune response triggered by the presence of the

pathogen. Another selective environment is one in which the
mutant competes for limited resources with the wild type or
with other organisms.

The second limitation of current databases is that they store
experimental results on essentiality obtained for rich media,
whereas many genes will be essential only when certain

compounds are not available (Fig. 4B). Papp et al. (2004)
have predicted that, for Saccharomyces cerevisiae, over 50%

of the genes that are non-essential in rich media will be essential
in more stringent conditions.
Our results therefore suggest that a more thorough descrip-

tion of essentiality is necessary, and our network-based method
to identify and classify enzymes may be a useful guide for
further and more exhaustive experiments, specially on enzymes

corresponding to links of type R2–R3, which are likely to have
fundamental and practical importance.
In the absence of such comprehensive experimental studies,

we have nonetheless been able to verify that some enzymes that
correspond to R2–R3 links in E.coli have been previously
suggested or are being investigated as potential drug targets.

The enzymes encoded by genes glmS (EC 2.6.1.16) pfs
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(EC 3.2.2.16 3.2.2.9) and ptsI (EC 2.7.3.9) catalyze transfor-
mations that our method assigns a high probability (>33%) of
being of type R2–R3 in E.coli, and are research targets for
bacterial infections according to the Therapeutic Target

Database (TTD) (Chen et al., 2002). It is important to note
that these enzymes also catalyze transformations of types other
than R2–R3. This turns out to be a quite general situation for

the enzymatic targets listed in the TTD; most target enzymes
listed in the database correspond to multiple links in the
E.coli metabolic network, often including several R1–R1 and

R1–R2 links and sometimes including links that involve
connector hubs (R6) and, to a lesser extent, provincial hubs
(R5). This suggests that the ‘effectiveness’ of current enzymatic

targets might be more related to removing many links in the
metabolic network, with the associated lack of specificity and
potential side effects, than to their ability to actually interfere
with critical species-specific links. We believe that our results

will help clarifying these issues, providing justification to why
certain enzymes are better targets than others, and will open the
door to the guided discovery of new targets.
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Guimerà,R. et al. (2004) Modularity from fluctuations in random graphs and

complex networks. Phys. Rev. E, 70, art. no. 025101.
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