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4Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, Bellaterra, 08193 Barcelona, Spain
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Experimental and empirical observations on cell metabolism cannot be

understood as a whole without their integration into a consistent systematic

framework. However, the characterization of metabolic flux phenotypes is

typically reduced to the study of a single optimal state, such as maximum

biomass yield that is by far the most common assumption. Here, we confront

optimal growth solutions to the whole set of feasible flux phenotypes (FFPs),

which provides a benchmark to assess the likelihood of optimal and high-

growth states and their agreement with experimental results. In addition,

FFP maps are able to uncover metabolic behaviours, such as aerobic fermen-

tation accompanying exponential growth on sugars at nutrient excess

conditions, that are unreachable using standard models based on optimality

principles. The information content of the full FFP space provides us with a

map to explore and evaluate metabolic behaviour and capabilities, and so it

opens new avenues for biotechnological and biomedical applications.
1. Introduction
Growing evidence suggests that metabolism is a dynamically regulated system

that reorganizes under evolutionary pressure to safeguard survival [1,2]. This

adaptability implies that metabolic phenotypes directly respond to environ-

mental conditions. For instance, unicellular organisms can be stimulated to

proliferate by controlling the abundance of nutrients available. In rich media,

cells reproduce as quickly as possible by fermenting glucose, a process that pro-

duces high specific growth rates as well as large quantities of excess carbon in

the form of ethanol and organic acids [3], a process known as the Crabtree effect

[4,5]. To survive the scarcity of nutrients during starvation periods, glycolysis is

hypothesized to switch to oxidative metabolism, which no longer maximizes

the specific growth rate, but instead the ATP yield needed for cellular processes.

Cells of multicellular organisms show similar metabolic phenotypes, relying

primarily on oxidative phosphorylation when not stimulated to proliferate

and changing to non-oxidative glycolytic metabolism during cell proliferation,

even if this process—known in cancer cells as the Warburg effect [6]—is much

less efficient at the level of energy yield.

These metabolic phenotypes are captured by computational approaches

such as flux balance analysis [7] (FBA) that has been applied to high-quality

genome-scale metabolic network reconstructions [8–12] to estimate the fluxes

of biochemical reactions at steady state. Compliant with stoichiometric mass

balance constraints and with imposed upper and lower bounds for nutrients,

FBA determines the flux distribution that optimizes a biological objective

such as specific growth rate, biomass yield, ATP yield or the rate of production

of a biotechnologically important metabolite. This important tool has been used

to predict the growth rate of organisms and to analyse their viability [13,14].
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Minimization of metabolic adjustment [15], which identifies a

single suboptimal point in flux space, has been proposed as an

alternative option for perturbed metabolic networks not

exposed to long-term evolutionary pressure. In any case, the

identified solutions are frequently inconsistent with the bio-

logical reality, because no single objective function describes

successfully the variability of flux states under all environ-

mental conditions [16,17], and in fact, the highest accuracy of

FBA predictions is achieved whenever the most relevant objec-

tive function is tailored to particular environmental conditions

according to the empirical evidence for a very specific meta-

bolic phenotype. For instance, FBA maximization of growth

rate, by far one of the most common assumptions, requires

either a rich medium or a manual limitation of the oxygen

uptake to a physiological enzymatic limit to mimic the

observed fermentation of glucose to formate, acetate or ethanol

typical of proliferative metabolism, while in minimal medium,

optimization of growth rate relies primarily on oxidative

phosphorylation, which increases ATP production converting

glucose to carbon dioxide, as in starvation metabolism.

Alongside optimal metabolic phenotypes, there is, how-

ever, a whole space of possible states that are non-reachable

by invoking optimality principles that prevent non-optimal

or typical biological states. Optimization of a biological func-

tion in the absence of a priori biological justification, similar

to what happens under conditions for proliferative or star-

vation metabolism, may indeed weaken in silico predictions.

Elementary flux modes [18,19]—non-decomposable steady-

state pathways through a metabolic network such that any

possible pathway can be described as a non-negative linear

combination of them—provide a view on the flux space with-

out the requirement of any optimality function. However,

calculation of all elementary flux modes for an entire network

is computationally very demanding owing to the combinator-

ial explosion of their number with increasing size of the

network [20]. For instance, the core metabolism of Escherichia
coli in reference [21] consists of around 271 million elementary

flux modes [22]. To overcome this handicap, recent advances

avoid the comprehensive enumeration of elementary flux

modes, using instead a sample of the available elementary

flux mode solution space [23]. Even assuming that one is able

to enumerate all elementary flux modes, it is, however, imposs-

ible to assess the likelihood of observing a given linear

combination of them in a typical phenotype. Further, elemen-

tary flux modes cannot capture changes associated with

reaction fluxes being capped for whichever physiological

reason (electronic supplementary material, figure S6). In

addition, owing to functional redundancy, the expansion of

possible metabolic pathways in elementary flux modes is not

unique. Therefore, enumeration of the elementary flux modes

is not as insightful as characterizing the whole phenotypic

space, albeit requiring a comparable computational

complexity.

Here, we introduce an alternative approach that estimates

directly the feasible flux phenotype (FFP) space using a

mathematically well-characterized sampling technique which

enables the analysis of feasible flux states in terms of their

likelihood. We use it to confront optimal growth rate solutions

with the whole set of FFPs of E. coli core metabolism in minimal

medium. The FFP space provides a reference map that helps us

to assess the likelihood of optimal and high-growth states. We

quantitatively and visually show that optimal growth flux phe-

notypes are eccentric with respect to the bulk of states,
represented by the FFP mean, which suggests that optimal phe-

notypes are uninformative about the more probable states,

most of them low growth rate. We propose FFP space eccentri-

city of experimental data as a standard tool to calibrate the

deviation of optimal phenotypes from experimental obser-

vations. Finally, the analysis of the entire high-biomass

production region of the FFP space unveils metabolic beha-

viours observed experimentally but unreachable by models

based on optimality principles, which forbid aerobic fermenta-

tion—a typical pathway utilization of proliferative

metabolism—in minimal medium with unlimited oxygen

uptake.
2. Material and methods
The FFP space, also termed the flux cone [24], of a metabolic

model in a specific environment has been explored using differ-

ent sampling techniques [25–27]. Here, we use the hit-and-run

(HR) algorithm to explore the FFP space, tailoring it to enhance

its sampling rate and to minimize its mixing time. We refer the

interested reader to reference [28], where our implementation

was first introduced, stating here only the key points and ideas.
2.1. Hit-and-run algorithm to sample the space
of feasible metabolic flux solutions

We start by noting that all points in the FFP space must simul-

taneously satisfy mass balance conditions and uptake limits for

internal and exchanged metabolites, respectively. The former

requirement defines a set of homogeneous linear equalities,

whose solution space is K, whereas the latter defines a set of

linear inequalities, whose solutions lie in a convex compact set V.

From a geometrical point of view, the FFP space is thus given by

the intersection S ¼ K > V. A key step of our approach consists

of realizing that one can directly work in S by sampling V in

terms of a basis spanning K. This allows retrieval of all FFPs that

satisfy mass balance in the medium conditions under consider-

ation, without rejection. Additionally, sampling in S enables a

drastic dimensional reduction to be performed and considerably

decreases the computation time. Indeed, assuming that there are

N reactions, I internal metabolites and E exchanged metabolites

(N . I þ E), one has that S , RN�I , which is typically a space

with greatly reduced dimensionality with respect to V , RN .

Once a basis for K is found, the main idea behind HR is fairly

simple. Given a feasible solution no [ S, a new, different feasible

solution nn [ S can be obtained as follows

(1) Choose a random direction u in RI ,

(2) Draw a line ‘ through no along direction u:

‘: no þ lu, l [ R

(3) Compute the two intersection points of ‘ with the boundary

of S, parametrized by l ¼ l2,lþ

n� ¼ no þ ðl�Þu
nþ ¼ no þ ðlþÞu

(4) Choose a new point nn from ‘, uniformly at random between

n� and nþ. In practice, this implies choosing a value ln in the

range ðl�, lþÞ uniformly at random, and then

nn ; no þ lnu:

This procedure is repeated iteratively so that, given an initial

condition, the algorithm can produce an arbitrary number

of feasible solutions (see electronic supplementary material,

figure S4 for an illustrative representation of the algorithm).

http://rsif.royalsocietypublishing.org/
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The initial condition, which must be a feasible metabolic flux

state itself (i.e. it must belong to S), is obtained by other methods.

We used and recommend MinOver, see [28,29], but any other

technique is valid. In particular, in cases where small samples

of the FFP space have already been obtained by other sampling

techniques, such points can be used to feed the HR algorithm

and produce a new, larger sample.

It was proved that HR converges towards the uniform

sampling of S [30], and we took several measures to ensure

that this was the case in our implementation (electronic sup-

plementary material, figure S4). For each model, we initially

created samples of size 1.3 � 109, giving rise to a final set of

106 feasible solutions, uniformly distributed along the whole

FFP space.

2.2. Principal component analysis of the profile
correlation matrix

Compared with phenotypic optimization or, e.g. elementary flux

modes, FFP sampling has the advantage of allowing the compu-

tation of reaction pair correlations. These may be exploited to

detect how global flux variability emerges in the system through

principal component (PC) analysis [31,32] and to quantify, in

turn, the closeness of optimal phenotypes to the bulk of the

FFP. In what follows, we briefly describe the method, whereas

an illustrative example is provided in electronic supplementary

material, figure S5.

To perform such a study, we start by writing down the

matrix Cij of correlations between all reaction pairs i, j. In

doing this, we measure how much the variability of reaction

flux vi affects the flux vj (and vice versa). In mathematical

terms, for each pair of reactions i, j, we have

Cij ¼
kninjl� knilknjlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(kn2
i l� knil

2) (kn2
j l� knjl

2)
q , ð2:1Þ

where k . . . l denotes an average over the sampled set and the

denominator of the fraction is simply the product of the standard

deviations of vi and vj. We plot such matrix in figure 1e.

Matrix C is real and symmetric by definition and, thus, diago-

nalizable. This means that, for every eigenvector rk, one has

Crk ¼ lkrk. Note that matrix C describes paired flux fluctuations,

in a reference frame centred on the mean flux vector. The eigen-

vectors rk of C express, in turn, the directions along which such

fluctuations are taking place. In particular, the eigenvectors r1, r2

associated with the first two largest (in modulo) eigenvalues dic-

tate the two directions in space where the sampled FFP displays

the greatest variability (see electronic supplementary material,

figure S5). This implies that sampled phenotypes lie closer to

the plane spanned by r1 and r2 than the ones produced by

any other linear combination of C eigenvectors. Projecting all

sampled FFP onto this plane thus allows a drastic dimensional

reduction to be performed while retaining much of the original

variability and enables direct graphical insight into where pheno-

types lie, where the bulk of the FFP is located and how the FBA

solution compares with them. In such a plot, each phenotype | is

described by two coordinates that may be parametrized via a

radius r| and an angle u|. Because the projection is normalized, it

follows that r| � 1: Furthermore, the closer r| is to one, the better

the phenotype | is described by only looking at variability along

r1, r2. As r| is one at most, and because we have so many pheno-

types clustered together, we chose to plot the PCA projection by

using an effective radius r| 0 ¼ � logðr|Þ in figure 1f. In this way,

we could better discriminate among different phenotypes and

obtain a ‘closest to the origin, closest to the r1, r2–plane’ set-up.

When compared with previous work focused on characteriz-

ing the PCs of the solution space to obtain a low-dimensional

decomposition of the steady flux states of the system [33], our
approach presents two main conceptual differences. First, the

sampling method used here produces a uniform sample over

the full set of feasible flux states without introducing any bias

towards high-growth flux states. Second, we aim at a full descrip-

tion of all feasible flux states to conduct a statistical analysis of

feasible phenotypes, which cannot be done by only retaining

PCs. We use PC analysis to visualize the eccentricity of the

FBA solution, but for all other purposes, we take into account

the whole set of metabolic states.
3. Results
We study the full metabolic flux space of the E. coli core meta-

bolic model [21,7], a condensed version of the genome-scale

metabolic reconstruction iAF1260 [10] that contains 73 central

metabolism reactions and 72 metabolites. This network is com-

plemented by the biomass formation reaction and the ATP

maintenance reaction. As in FBA, feasible flux states of a meta-

bolic network are those that fulfil stoichiometric mass balance

constraints together with imposed upper and lower bounds

on the reaction fluxes. These constraints restrict the number

of solutions to a compact convex set which contains all possible

flux steady states in a particular environmental condition.

In glucose minimal medium, the FFP space of E. coli core

metabolism is determined by 70 potentially active reactions,

including biomass formation and ATP maintenance reaction,

and 68 metabolites. Note that we allow negative values

for reversible reactions. We apply a fast and efficient hit-

and-run algorithm [28] (see Material and methods) that

explores the full solution space at random to produce a raw

sample of 109 feasible states from which we extract a final

uniform representative set of 106 feasible states.

Note that our approach is suitable for genome-scale

network sizes beyond the reduced size of the E. coli core

model. There is not any fundamental or technical bottleneck

that prevents its application to complete metabolic descrip-

tions at the cell level, because uniform samples can also be

generated in genome-scale networks. We used the E. coli
core metabolism owing to a matter of computational time

and ease of visualization.

3.1. Optimal growth is eccentric with respect to the full
feasible flux phenotype space

From the sampled set of E. coli core metabolic states in mini-

mal medium of glucose bounded to 10 mmol/(gDW . h),

we collected the metabolic flux profile of each individual

reaction as the set of its feasible metabolic fluxes. From this

profile, we computed the probability density function f (v)

which describes the likelihood for a reaction to take on a par-

ticular flux value. As an example, see figure 1a for

the biomass function. We observe a variety of shapes

(electronic supplementary material, figure S1), all of them

low-variance, most displaying a maximum probability for a

certain value of the flux inside the allowed range (note that

none of these histograms can have more than one peak

owing to the convexity of the steady-state flux space), and

many being clearly asymmetric.

To characterize the dispersion of the possible fluxes for each

reaction, we measured its coefficient of variation CV( f(v))

calculated as the ratio between the standard deviation of

possible fluxes and their average (electronic supplementary

material, table S1). For all but three reversible reactions

http://rsif.royalsocietypublishing.org/
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(malate dehydrogenase, glucose-6-phosphate isomerase

and glutamate dehydrogenase), the only reversible reactions

having a low associated flux mean and thus a higher CV( f(v)),

this metric is below one and when ranked for all reactions, it

steadily decreases to almost zero (figure 1b). Interestingly, we

find that this coefficient is significantly anticorrelated with

the essentiality of reactions, as observed experimentally [34]

(point-biserial correlation coefficient 20.29 with p-value 0.01).

This means that essential reactions tend to have a highly concen-

trated profile of feasible fluxes. Besides, and only for the glucose

transferase reaction GLCpts, we find a zero probability of

having a zero flux, which is not surprising as the lower bound

given by FVA is strictly greater than zero indicating that this

reaction is essential for E. coli core metabolism in glucose mini-

mal medium. The asymmetry of each profile was characterized
by the distance between the more probable flux in the FFP

space and the lower flux bound of the flux variability range

rescaled by the flux variability range of the reaction (electronic

supplementary material, table S1). In figure 1c, we show a

scatterplot of values for all 68 core reactions. Strikingly, the

rescaled distances cluster in three regions around 0, 0.5 and 1

forming groups of sizes 38, 15 and 17, respectively. This indi-

cates that the most probable flux is close to either the lower or

upper bound or, conversely, the probability distribution func-

tion tends to be quite symmetric. Moreover, we also observe

an anticorrelation between the length of the flux range and the

position of the most probable flux, so that the closer this is to

its maximum value the shorter the allowed range of fluxes.

In order to assess the likelihood of FBA maximization of

the biomass reaction (FBA-MBR; or equivalently of the

http://rsif.royalsocietypublishing.org/


8

4

0

60

40

20

50

40

30

20

10

30

20

10

FBA
mean
experimental

4 8 12

GUR

PUR

SUR

A
PR

SUR

4

10

2 4 6 8 10 12 14

12 14 16 18 20 22

6 8 10 12

O
U

R
O

U
R

O
U

R

(b)

(a)

(c)

Figure 2. Comparison of predicted phenotypes and experimental data.
Sampled points in the FFP space with maximum carbon source upper
bound are plotted in shaded grey, darkness is proportional to the number
of points. Experimental data points are red circles. The in silico-defined
line of optimality, representing FBA optimal growth solutions as a function
of the upper bound uptake rate of the carbon source, is shown in orange.
Blue squares correspond to FFP mean values for different carbon source
upper bound uptake rates. (a) Oxygen versus glucose uptake rates, exper-
imental data from reference [1]. The FFP space is sampled with glucose
bounded to 12 mmol/(gDW . h). (b) Oxygen versus pyruvate uptake rates,
experimental data from reference [35]. The FFP space is sampled with
pyruvate bounded to 23 mmol/(gDW . h). (c) Oxygen versus succinate
uptake rates, experimental data from [36]. The FFP space is sampled with
succinate bounded to 15 mmol/(gDW . h). Inset: acetate production rate
versus. succinate uptake rate, experimental data from reference [36].
(Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150543

5

 on September 14, 2015http://rsif.royalsocietypublishing.org/Downloaded from 
growth rate) solutions in relation to typical points within

the whole FFP space (typical, in our mathematical/

computational context, means statistically representative in

relation to the whole set of flux states contained in the FFP

space), we calculated the average flux value for each reaction,

that we named the mean, and compared it with the FBA

optimal biomass production flux. The complementary cumu-

lative distribution function of the distances between these

two characteristic fluxes rescaled by the flux variability range

of reactions is shown in figure 1d (electronic supplementary

material, table S1). We observe a broad distribution of values

over several orders of magnitude with no mean value that is

actually very close to the FBA maximal solution except for a

few reactions, which typically work at maximum growth. At

the other end of the spectrum, deviated reactions include, for

instance, excretion of acetate and phosphate exchange. As a

summary, we conclude that the mean and the FBA biomass

optimum are rather distant, which suggests that FBA optimal

states are uninformative about phenotypes in the bulk of

states in the FFP space.

To visualize neatly the eccentricity of the FBA maximum

growth state with respect to the bulk of metabolic flux sol-

utions, we used PC analysis [31,32] in order to reduce the

high dimensionality of the full flux solution space projecting

it onto a two-dimensional plane from the most informative

viewpoint (see Material and methods). We took reaction pro-

files in pairs to calculate the matrix of Pearson correlation

coefficients measuring their degree of linear association

(figure 1e; electronic supplementary material, table S3). Note

that ordering of reactions by pathways allows clear visual feed-

back of intra- and interpathway correlations taking place in the

core metabolic network, such that clusters of highly correlated

reactions appear as bigger darker squares. The two axes of our

projection correspond to the two first PCs of this profile corre-

lation matrix r1 and r2, which account for most of the

variability in profile correlations. Each sampled metabolic

flux state was rescaled as a z-score centred around the mean

and projected onto these axes, as shown in the scatterplot,

figure 1f, in polar coordinates, where we applied a negative

logarithmic transformation to the radial coordinate for ease

of visualization. We see that the majority of phenotypes

have a radius close to zero. Because points closer to the

origin are better described by the two PCs, this implies that

r1 and r2 capture the largest variability of the sampled FFP.

Clearly, the FBA optimal growth solution is rather eccentric

with respect to typical solutions, with an associated radius of

0.98 in this representation. In fact, 97% of states have a smaller

radius than the optimal growth solution (see electronic

supplementary material, figure S2).
3.2. The feasible flux phenotype space gives a
benchmark to calibrate the deviation of optimal
phenotypes from experimental observations

We focus on the relationship between primary carbon source

uptakes and oxygen need to illustrate the potential of the

FFP space as a benchmark to calibrate the deviation of

in silico predicted optimal phenotypes from experimental

observations. Sampled FFP states of the E. coli core model, in

particular FFP mean values as a function of the upper bound

uptake rate of the carbon source, are compared with reported

experimental data for oxygen uptakes in minimal medium
with glucose, pyruvate or succinate as a primary carbon

source (figure 2). We also included in the figures the line of

optimality representing FBA optimal growth solutions. We

used glucose experimental data points from reference [1],

experimental results for pyruvate reported in reference [35]

and experimental results in reference [36] for the quantita-

tive relationship between oxygen uptake rate and acetate

production rate as a function of succinate uptake rate.

In all cases, FBA-MBR reproduces well experimental

data points in the low carbon source uptake region [36],

where E. coli is, indeed, optimizing biomass yield.

However, the oxygen uptake rate saturates after some critical

threshold of carbon source uptake rate, which depends on

the carbon source reaching a plateau, which, among other

possibilities, could be explained by the existence of a physio-

logical enzymatic limit in oxygen uptake that lessens the

http://rsif.royalsocietypublishing.org/
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capacity of the respiratory system [37]. The plateau levels are

18.8+0.7 for glucose [36], 16.8+0.4 for pyruvate [35] and

19.49+0.78 mmol/(gDW . h) for succinate [36]. In this region

of high carbon source uptake, FBA-MBR predicts an oxygen

uptake overestimated by around 25% with respect to the

values reported from experiments. While this amount is, in

principle, large, the FFP space gives a standard that helps to

calibrate it.

We measured the eccentricity of experimental obser-

vations as their distance to the FFP mean. For glucose, this

value is 19.4, which makes the distance of 5.3 between the

FBA-MBR prediction and experimental data relatively low

(figure 2a). The distance of 8.2 between the FBA-MBR predic-

tion and experimental data is slightly worse for pyruvate

(figure 2b) in that case the eccentricity of experimental

observations is 18.4. The disagreement between optimality

predictions and experimental data is much more significant

in the case of succinate (figure 2c) for which the eccentricity

of experimental observations is only of 4.3, whereas the dis-

tance between the FBA-MBR prediction and experimental

data is 5.4, meaning that the FFP mean is, indeed, more

adjusted to observations. The case of acetate production for

this carbon source is even more conspicuous (figure 2c
inset). While FBA-MBR is still reproducing well the exper-

imental results of no acetate production in the low succinate

uptake region, it cannot predict production of acetate at any

succinate uptake rate due to the fact that FBA-MBR in minimal

medium with unlimited oxygen does not capture the enzy-

matic oxygen limitation. The FBA-MBR solution diverts

resources to the production of ATP entirely through the oxi-

dative phosphorylation pathway. Thus, it fails to reproduce

experimental observations of acetate production in the

region of high succinate uptake rates [36,38–40]. In contrast,

most metabolic states in the FFP space are consistent with

acetate production, so that, in this case, the FFP mean turns

out to be a good predictor of the experimentally observed

metabolic behaviour.

In summary, while FBA-MBR predictions seem accurate for

low carbon source uptake rate states in minimal medium as

seen previously [36], the experimental points diverge from

the FBA-MBR prediction state when increased values of

carbon source uptake rates are considered. Note that, in gen-

eral, it is not straightforward to quantify the significance of

the divergence. Here, we propose to use the FFP space as a

reference standard. According to this calibration, remarkably

we find that FBA optimal growth predictions of oxygen

needs versus glucose, pyruvate or succinate uptake are worse

the more downstream the position of the carbon source into

catalytic metabolism. Using the E. coli core metabolism, we

have checked that the ratio of the maximum ATP production

rate to the maximum oxygen uptake (both calculated by FBA

optimization of ATP production rate) for the three carbon

sources glucose, pyruvate and succinate are respectively 2.9,

2.6 and 2.4, so this ratio decreases as more downstream in the

catalytic metabolism. These results are consistent with values

reported in reference [37]. FBA privileges energy production

by diverting fluxes to oxidative phosphorylation providing

maximum energy for growth, so that FBA should work

worse the less effective the oxidation of the carbon source is

for ATP synthesis. This can be explained in terms of departures

of energy from substrate catabolism to functions other than

growth, such as basal maintenance, which become more rel-

evant in relative terms when compared with the total energy
production when the energy-to-redox ratios of the carbon

substrate are lower [41].
3.3. High-biomass production feasible flux phenotype
region displays aerobic fermentation in minimal
medium with unlimited oxygen uptake

We resampled the high-growth metabolic region of the E. coli
core metabolism FFP space in glucose minimal medium with

a glucose upper bound of 10 mmol/(gDW . h), as in §2.1. We

defined this region by setting a minimal threshold for the bio-

mass production of �0.4 mmol/(gDW . h) [42], and produced

a sampled with a final size of 105 states. We note that pheno-

types in this high-growth sample remain very close to the

biomass yield threshold owing to the exponential decrease

in the number of feasible flux states with increased biomass

production, as in the biomass flux profile in figure 1a.

In this region, we identified pathway utilization typical of

proliferative microbial metabolism, even when considering a

minimal medium and unlimited oxygen uptake. This metabolic

behaviour is consistent with experimental data [43,36,1], but it

is unreachable by FBA models based on optimality principles

(unless optimization is accompanied by auxiliary constraints

not assumed in standard FBA implementations, such as the

solvent capacity constraint [42], or by modelization beyond

stoichiometric mass balance, introducing, for instance, thermo-

dynamically feasible kinetics or enzyme synthesis [44,45]). We

checked that the by-products cannot be explained by FBA-

MBR in minimal medium with unlimited oxygen supply

because, in this optimization framework, metabolic fluxes are

basically forced to ATP production through oxidative phos-

phorylation with excretion of CO2 as waste. However,

increasing the oxygen limitation in FBA-MBR results in

secretion of formate, acetate and ethanol—in that order—with

corresponding shifts in metabolic behaviour [37].

According to the FFP space of E. coli core metabolism,

we observe that the high-biomass production FFP subsample

is characterized by the secretion of small organic acid

molecules, even when the supply of oxygen is unlimited.

This fact points to the simultaneous utilization of glycolysis

and oxidative phosphorylation to produce biomass and

energy and so to suboptimal states. This observation is sup-

ported by results from 13C-metabolic flux analysis in E. coli
[46], where repressed oxidative phosphorylation was pro-

posed as responsible for the measured submaximal aerobic

growth. Pathway utilization is illustrated in the schematic

shown in figure 3a. Quantitative relationships between the

production of small organic acids molecules and glucose

and oxygen uptake rates are shown in the remaining panels

of figure 3. Three-dimensional scatterplots for the produc-

tion rates of formate, acetate and ethanol are shown in

figure 3b,d,f, respectively, with projections into the three

possible two-dimensional planes shown in figure 3c,e,g,

respectively. Electronic supplementary material, figure S3

gives results for lactate. As the levels of glucose and oxygen

uptakes are raised, metabolic phenotypes can achieve an

increased production of formate, acetate and ethanol, even

though the majority of feasible phenotypes remain at low

organic acids production values. Owing to the high-growth

requirement, oxygen uptake is always high but its variability

increases with glucose uptake increase around avalue of approxi-

mately 41.2 mmol/(gDW . h), which clusters the majority of

http://rsif.royalsocietypublishing.org/


0.3

0.2

0.1

0

2.0

1.0

0

22.0

20.0

18.0

glucose

O2

CO2

38.0

40.0

42.0

38.0

40.0

42.0

42.0

40.0

38.0

biomass

formate

acetate

ethanol

E. coli

O
U

R

E
PR E
PR

9.8

9.9

10.0

A
PR

9.8

9.9

10.0

GUR

GUR

GUR

0.3

0.2

0.1

0

38.0

40.0

42.0

O
U

R9.8

9.9

10.0

GUR

O
U

R
O

U
R

2.0

1.0

0

38.0

40.0

42.0

A
PR

9.8

9.9

10.0

GUR

O
U

R

9.8

9.9

10.0

FP
R

22.0

20.0

18.0
42.0

40.0

38.0
GUR

O
U

R

9.8

9.9

10.0

FP
R

extracellular
environment

biomass

formate

acetate

ethanol

extracellular
environment

low growth(a)

(b) (c)

(d) (e)

( f ) (g)

high growth

Glycolysis

pyruvate

Oxidative
phosphorylation

Aerobic
glycolysis

pyruvate

glucose

O2

CO2

E. coli

Glycolysis

pyruvate

Oxidative
phosphorylation

Aerobic
glycolysis

pyruvate

Figure 3. High growth phenotypes of E. coli core metabolism on glucose minimal medium. (a) Schematic of pathway utilization in high-growth versus low-growth
conditions. (b) Three-dimensional scatterplot of formate production rate versus glucose and oxygen uptake rates. (c) Density projections of (b) on each of the possible
two-dimensional planes, formate – glucose, formate – oxygen and glucose – oxygen. (d ) Three-dimensional scatterplot of acetate production rate versus glucose and
oxygen uptake rates. (e) Density projections of (d ) on each of the possible two-dimensional planes, acetate – glucose, acetate – oxygen and acetate – oxygen.
( f ) Three-dimensional scatterplot of ethanol production rate versus glucose and oxygen uptake rates. (g) Density projections of ( f ) on each of the possible
two-dimensional planes, ethanol – glucose, ethanol – oxygen and glucose – oxygen.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150543

7

 on September 14, 2015http://rsif.royalsocietypublishing.org/Downloaded from 

http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150543

8

 on September 14, 2015http://rsif.royalsocietypublishing.org/Downloaded from 
high-growth metabolic phenotypes. Interestingly, this oxygen

uptake rate value marks a region in the FFP space with maximum

potential production rates of formate, acetate and ethanol. Above

and below that value, most states are concentrated in the range

[39,42] mmol/(gDW . h).

Taken together, these results indicate that, contrarily to

FBA predictions, a high level of glucose uptake combined

with unlimited oxygen can maintain the requirements of

proliferative metabolism for biomass formation through

aerobic fermentation even in minimal medium. At the same

time, additional oxygen uptake diverts glucose back

towards more efficient ATP production through oxidative

phosphorylation. Hence, oxygen has the potential of regulat-

ing the glucose metabolic switch in which glucose uptake

rates larger than a critical threshold around 5.0 mmol/

(gDW . h) [42] lead to a linearly increasing maximum pro-

duction of organic acid by-products by gradual activation

of aerobic fermentation and a slight decrease of oxidative

phosphorylation. The reduction of glycolysis fluxes for

oxygen-sufficient conditions was reported previously in the

context of 13C-metabolic flux analysis [46].
4. Discussion
The information content of the full FFP space of metabolic

states in a certain environment provides us with an entire

map to explore and evaluate metabolic behaviour and capa-

bilities. While optimality goals need to be tailored to

conditions and produce singular optimal solutions that may

not be consistent with experimental observations, we have

nowadays sufficient computational and methodological

capacity to produce and analyse full FFP maps. The latter

offer a reference framework to put into perspective the likeli-

hood of particular phenotypic states that, as shown, enables

elucidation of metabolic behaviours that are unreachable

using models based on optimality principles. In fact, the

location of metabolic flux distributions into precise optimal

states has been challenged recently. Chen et al. [46] found

submaximal growth in aerobic conditions when steady-state
13C-metabolic flux analysis was applied to E. coli. It has

been proposed that metabolic flux evolves under the trade-

off between two forces, optimality under one given condition

and minimal adjustment between conditions [17]. In this

way, resilience to changing environments necessarily forces

flux states to near-optimal, but suboptimal regions of feasible

flux states in order to maintain adaptability.

In the FFP map of E. coli core metabolism in aerobic mini-

mal medium, optimal growth states appear as eccentric and

far from the bulk of more probable phenotypes represented

by the FFP mean, which offers an ergodic perspective of

the FFP space in which all states can be explored at random

with equal probability. One of the uses of the method is pre-

cisely to evidence the effects of evolutionary pressure on

organisms, which may actually result in eccentric flux

states. On the other hand, the FFP space gives a standard

to calibrate the deviation of optimal phenotypes from exper-

imental observations. Oxygen consumption is a particularly

interesting target for analysis because it has been identified

as a trigger of metabolic shifts [37,47]. Interestingly, accord-

ing to the FFP map as a reference standard, we found that

in high-growth conditions FBA-MBR predictions of exper-

imental observations for unlimited oxygen needs versus
glucose, pyruvate or succinate uptakes are worse the more

downstream the uptake of the carbon source into the catalytic

metabolic stream. This is consistent with the fact that the

FBA-MBR solution diverts resources to the production

of ATP entirely through the oxidative phosphorylation

pathway, so that the greater the effective potential of the

carbon source to recombine with oxygen to produce energy,

the more convergent the in silico prediction and the observed

states.

In order to correct FBA in high-growth conditions, some

investigations restricted the solution space beyond mass bal-

ance and uptake bounds through additional thermodynamic,

kinetic or physiological constraints, such as the solvent

capacity constraint quantifying the maximum amount of

macromolecules that can occupy the intracellular space [42].

Alternatively, the objective function implemented in FBA

has been modified to nonlinear maximization of the ATP or

biomass yield per flux unit [16]. Other models consider con-

straints beyond stoichiometric mass balance, for instance

thermodynamically feasible kinetics or enzyme synthesis

[44,45]. While these FBA modifications enhance some predic-

tions, their effectiveness depends on the estimation of kinetic

coefficients using empirical or experimental data. In contrast,

the FFP map contains the set of all solutions determined

solely on the basis of mass balance and upper and lower

bounds for nutrients, and therefore, it includes solutions

compliant with physiological constraints or with the limit-

ations imposed by complex metabolic regulation [48]. In

particular, the FFP space naturally displays all high-growth

feasible states that show characteristic metabolic behaviours

such as aerobic fermentation with unlimited oxygen uptake

even in minimal medium without the need to determine

additional constants. This aerobic fermentation, which is

apparently inefficient in terms of energy yield when com-

pared with oxidative phosphorylation but demonstrated as

a favourable catabolic state for all rapidly proliferating cells

with high glucose uptake capacity [42], turns out as a prob-

able metabolic phenotype even in minimal medium. Results

in this direction have been reported using steady-state
13C-metabolic flux analysis, which has shown that E. coli
grows suboptimally in glucose minimal media owing to

limited oxidative phosphorylation [46].

Beyond theoretical implications, FFP maps of microbial

organisms can be of particular interest as tools for biotechno-

logical applications, for instance in the engineering of E. coli
fermentative metabolism as a fundamental cellular capacity

for valuable industrial biocatalysis [49]. In biomedicine, the

investigation of FBA optimal phenotypes in the framework

of the FFP map can help to contextualize disease phenotypes

in comparison with normal states. For instance, FBA proved

suitable for modelling complex diseases such as cancer as it

assumes that cancer cells maximize growth searching for

metabolic flux distributions that produce essential biomass

precursors at high rates [50,51]. The analysis of the entire

region of high-growth phenotypes will allow the attainment

and study of a variety of suboptimal feasible flux states

close to optimality but which cannot be reproduced by

optimality principles, and so it opens new avenues for the

understanding of general and fundamental mechanisms

that characterize this disease across subtypes.
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