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Network inference is the process of learning the properties of complex networks from data. Besides
using information about known links in the network, node attributes and other forms of network metadata
can help solve network inference problems. Indeed, several approaches have been proposed to introduce
metadata into probabilistic network models and to use them to make better inferences. However, we know
little about the effect of such metadata in the inference process. Here, we investigate this issue. We find that,
rather than affecting inference gradually, adding metadata causes a crossover in the inference process and
in our ability to make accurate predictions, from a situation in which metadata do not play any role to a
situation in which metadata completely dominate the inference process. When network data and metadata
are partly correlated, metadata optimally contributes to the inference process at the crossover between data-
dominated and metadata-dominated regimes.
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I. INTRODUCTION

Many systems can be represented as networks, with
nodes representing units (for example, people in a social
network, or proteins in a protein-protein interaction net-
work), and links representing interactions between the units
(for example, friendship relationships between people or
physical binding interactions between proteins). Network
inference is the process of inferring the properties of those
networks from data; typical network inference problems
include the identification of groups of nodes with similar
connection patterns or the identification of unobserved
interactions, that is, link prediction [1–6]. Network infer-
ence and, in particular, link prediction are increasingly
important in problems with applications ranging from
the prediction of interactions between drugs [7–9] to the
prediction of human preferences and decisions [10–14].
Typically, network inference starts from observations of

some of the links in the network, which are used to predict
unobserved links or to infer other network properties.
However, other sources of information such as system
dynamics [15,16] or node attributes [13,17–25] can also be

used to aid in the inference process. Here, we study how
node attributes are introduced in the inference process and
what the effect of using such metadata is. In this regard, our
work is in line with previous work treating metadata as
additional data [13,17–25] and warning against the practice
of using metadata as “ground truth” against which infer-
ence approaches should be evaluated [23]. Indeed, as we
show below, metadata are sometimes uninformative and
even misleading to the inference process; therefore, in
general, they should not be used as ground truth without
good theoretical arguments.
We present our work in terms of the problem of link

prediction in recommender systems [11,12,26], in which
the goal is to predict the association between users and
items (for example, books or movies). However, our
conclusions apply to model-based, probabilistic approaches
to network inference, in general. We introduce a multipar-
tite network model that encompasses and generalizes
previous attempts to use node metadata in network infer-
ence problems (Fig. 1). Within this framework, the problem
of link prediction in general unipartite or bipartite networks
is just a particular case. Unlike most previous approaches,
our multipartite network model allows us to control the
importance of the node metadata and thus to investigate
when and how metadata help in the inference.
We find that, contrary to what one may expect, node

metadata do not affect the inference problem gradually.
Rather, even when the weight of metadata increases
smoothly, the inference process undergoes a crossover
from a situation in which metadata do not play any role
to a situation in which metadata completely dominate the
inference process. When network data and metadata are
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partly correlated, metadata optimally contribute to the
inference process at the crossover between data-dominated
and metadata-dominated regimes. This crossover is remi-
niscent of (but distinct from, in that it is induced by
the metadata) transitions in the detectability of node
groups [27–29] or in semisupervised network inference
problems [30].

II. MULTIPARTITE MIXED-MEMBERSHIP
STOCHASTIC BLOCK MODELS

WITH LABELED LINKS

We introduce a very general network model based on
stochastic block models [3,31,32] that allows us to deal
with (directed or undirected) unipartite and bipartite net-
works, whose links are binary or labeled, and with node
attributes of different types that can be combined as needed
(Fig. 1). As we discuss below, this model extends and
generalizes previous models.
In what follows, we use the terminology of recommender

systems [11,12,26] although, as previously mentioned, the
model is completely general and applicable to any type of

relational data with node attributes. Our objective is to
model a bipartite network with labeled links connecting N
users to M items (for example, movies or books). Links rij
represent ratings of users i to items j and are labeled; that is,
rij can take values in a finite discrete set such as
flike; dislikeg, fgreen; yellow; redg, or f0; 1;…; Rg. To
model these ratings, we assume that (i) there are user
and item groups, and users and items belong to mixtures of
such groups; (ii) the probability that a user i rates item j
with rij depends only on the groups to which they belong.
These assumptions lead to a bipartite [10,11,33] mixed-

membership [34] stochastic block model [12] in which the
probability that user i gives item j a rating r is

Pr½rij ¼ r� ¼
X
αβ

θiαηjβpαβðrÞ: ð1Þ

Here, θi is the normalized membership vector of user i,
and each element θiα represents the probability that user i
belongs to group α (with

P
α θiα ¼ 1). Similarly, ηj is the

normalized membership vector of item j; ηjβ represents the
probability that item j belongs to group β. Finally, pαβðrÞ is
the probability that a user in group α and an item in group β
are connected with a rating r. The normalization condition
here is

P
r pαβðrÞ ¼ 1.

We note that the association between nodes (users and
items) and their attributes can also be represented as
bipartite networks. Therefore, we can model node-attribute
associations in a similar manner to ratings. Because we are
interested in how node attributes can help in the inference
of the model parameters ðθ; η;pÞ for ratings, we consider
that membership vectors for users (θ) and items (η) in their
respective attribute networks are the same as in the model
for the ratings.
We consider both excluding and nonexcluding attributes.

For excluding attributes, having one attribute precludes
from having another; for example, a user’s age group
cannot be 30–39 years old and 40–49 years old simulta-
neously. We model each set of excluding attributes as a
single attribute node (for example, an age node) that is
connected to users or items through labeled links (each
label representing a mutually excluding age group in the
example). The probability that user i has an excluding
attribute e (that is, the probability that the link eil between
user i and attribute node l is of type e) is

Pr½eil ¼ e� ¼
X
α

θiαqαðeÞ; ð2Þ

where qαðeÞ is the probability that a user of group α has
an attribute of type e, and

P
e qαðeÞ ¼ 1. For items, the

expression is identical except that we use item membership
vectors η instead of user membership vectors θ.
We also consider nonexcluding attributes, such as item

genre (for example, a movie could be both “action”

(a)

(b)

(c)

FIG. 1. Multipartite mixed-membership stochastic block model
with labeled links. In panel (a), we cast the recommendation
problem (in which one aims to predict how users will rate certain
items) into a network inference problem. Here, users rate movies
with three possible ratings (green, orange, or red). Additionally,
we have excluding attributes for users (two excluding genders
and three excluding age groups, represented by different shades
of the same color) and nonexcluding attributes for movies (two
movie genres; the connection to these attributes is binary, yes or
no, but, in general, it does not need to be). Similar to ratings, we
represent these attributes as bipartite networks. Although we
frame our description of the model in terms of recommendations
or link prediction in a bipartite network, the problem of link
prediction in regular unipartite networks is just a particular case in
which user nodes and item nodes are the same. In panel (b), each
bipartite network in the multipartite network is modeled using a
mixed-membership stochastic block model (see text). The indi-
vidual block models are coupled by the user and item member-
ship vectors (θ and η, respectively), shown in panel (c) along with
all other model parameters and their dimensions (see text).
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and “western”). We model each of these nonexcluding
attribute types as individual attribute nodes connected to
user or item nodes by links that are typically binary (either
do or do not have the attribute) but that could, in general,
also be labeled. Then, the probability that item i has
attribute g of type a is also modeled using a mixed-
membership, bipartite stochastic block model

Pr½aig ¼ a� ¼
X
αγ

θiα ζgγq̂αγðaÞ; ð3Þ

where ζgγ is the membership vector of attribute g and
q̂αγðaÞ is the probability that a user in group α has an
attribute of type a for an attribute in attribute group γ. As
before, the expression for item nonexcluding attributes is
identical, just replacing user membership vectors θ by item
membership vectors η.

III. MODEL POSTERIOR AND INFERENCE

Our objective is to model the observed ratings RO and to
predict the value of some unobserved ratings R. For this,
and given Eq. (1), we need to infer the parameters θ, η, and
p from RO. The posterior distribution over these parameters
is given by

Pðθ; η; pjROÞ ∝ PðROjθ; η; pÞPðθ; η; pÞ
¼ LRðθ; η; pÞPðθ; η; pÞ; ð4Þ

where LRðθ; η; pÞ≡ PðROjθ; η; pÞ is the likelihood of the
model and Pðθ; η; pÞ is the prior over model parameters.
According to Eq. (1), the likelihood is

LRðθ; η; pÞ ¼
Y

ði;jÞ∈RO

�X
αβ

θiαηjβpαβðrOijÞ
�
: ð5Þ

Similarly, if we decide to jointly model the ratings
and the metadata encoded in the observed user and item
attributes AO, we also need to infer the values of the
parameters ζ, q, and q̂) using the posterior

Pðθ; η; ζ; p; q; q̂jRO; AOÞ ∝ LRðθ; η; pÞ
Y
k

LAkðθ; η; ζ; q; q̂Þ

× Pðθ; η; ζ; p; q; q̂Þ; ð6Þ

where LAkðθ; η; ζ; q; q̂Þ≡ PðAO
k jθ; η; ζ; q; q̂Þ is the likeli-

hood of the kth attribute network (for example, the age
attribute network for users or the genre attribute network
for items). For the kth excluding attribute, this likelihood
reads

LAkðθ; η; qÞ ¼
Y

ði;lkÞ∈AO
k

�X
α

θiαqkα(ðeOk Þilk)
�
; ð7Þ

where lk is the kth excluding attribute and the product is
over all nodes i for which we observe attribute lk.
For the kth nonexcluding attribute, we have

LAkðθ; η; ζ; q̂Þ ¼
Y

ði;gÞ∈AO
k

�X
αγ

θiαζ
k
gγq̂kαγ(ðaOk Þig)

�
; ð8Þ

where the product is over all observed associations between
nodes i and attributes gwithin the kth class of nonexcluding
attributes.
Ignoring normalizing constants, and in a spirit similar to

Refs. [18,25], we define a parametric log-posterior as

πðθ; η; ζ; p; q; q̂jRO; AOÞ
¼ LRðθ; η; pÞ þ

X
k

λkLAkðθ; η; ζ; q; q̂Þ; ð9Þ

where

LRðθ; η; pÞ ¼ logLRðθ; η; pÞ;
LAkðθ; η; ζ; q; q̂Þ ¼ logLAkðθ; η; ζ; q; q̂Þ

are the log-likelihoods of ratings and attributes, respec-
tively. For λk ¼ 0, we recover Eq. (4) with uniform priors
on the parameters, thus completely ignoring all metadata.
Conversely, for λk ¼ 1, we are jointly modeling the net-
work of ratings and the network of attributes as in Eq. (6),
with uniform priors on the parameters. By tuning the values
of λk, we can interpolate between these situations and
extrapolate to others with λk > 1; in the limit λk → ∞, we
only model the attribute network.
To interpret the parametric log-posterior in Eq. (9),

consider the case where λk ∈ Nþ is a natural number.
In this case, for each observed attribute link, there are λk
identical terms in the likelihood, exactly as if the corre-
sponding attribute links were observed λk times independ-
ently. For example, the posterior we obtain with λk ¼ 2 is
identical to what we would obtain if we had two indepen-
dent sources for attribute k, if both sources coincided in all
cases, and if we modeled each of them with the λk ¼ 1
generative model. Note that, because of this, each attribute
likelihood is automatically normalized as in the λk ¼ 1
case, except that, if there are Mk observed attribute links,
the normalization is over the space of networks with λkMk
links, instead of Mk. The case with other positive values of
λ, fλ > 0; λ ∉ Nþg, can be interpreted as interpolating
between integer values of λk.
Given this interpretation of the log-posterior as a

whole, the terms corresponding to the attribute models
can indistinctly be interpreted as part of the likelihood
of a joint model of ratings and attributes, similar to
Refs. [18–20,24,25], or as a nonuniform prior over mem-
bership vectors as in Refs. [17,21,22]. If interpreted as part
of a joint model, then λk can be seen as some factors that are
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needed because attribute data are somehow less (or more)
reliable than rating data, perhaps because we have reason to
believe that attributes are more (or less) subject to noise, or
because each rating corresponds, in fact, to a mean over
several observations. Conversely, if interpreted as priors
over the partitions, λk should be interpreted as hyper-
parameters defining how certain we are a priori about the
importance of node attributes.
Either way, this parametrized posterior allows us to

investigate how the metadata encoded in the attribute
networks enter the inference process for the ratings, and
under which conditions this results in better and more
predictive models for those ratings. To do this, we maxi-
mize the posterior for fixed values of λk using an expect-
ation-maximization (EM) algorithm [12,21,24,25] (see the
Appendix A), which gives the most plausible parameter
values (including group memberships). Because the pos-
terior landscape is, in general, rugged, we perform several
runs of the EM algorithm and compute the average
probability for each unobserved rating to make predictions
(see Ref. [12] and Appendix A).

IV. RELATIONSHIP TO PREVIOUS WORK

The literature on using metadata for link prediction and
recommender systems is vast and includes all sorts of
approaches ranging from simple heuristics to sophisticated
machine learning methods. However, our interest here is
more closely related to probabilistic approaches to network
inference, even when those approaches are not applied
directly to link prediction [13,17,18,20–23]—as shown in
Refs. [19,24,25], once model parameters are inferred for,
for example, community detection, they can easily be used
to predict links as well.
Our focus on approaches based on probabilistic gen-

erative models is motivated by three characteristics of
such approaches: (i) All assumptions in them are explicit;
(ii) principled (as opposed to heuristic) and sometimes even
exact inference approaches are possible; and (iii) their
results are more readily interpretable. These three charac-
teristics make probabilistic approaches especially appro-
priate for our ultimate goal of understanding how node
attributes enter and help in the inference process.
From this perspective, the multipartite mixed-member-

ship stochastic block model is useful because it extends
and generalizes previous models. By introducing excluding
and nonexcluding attributes, the model can simultaneously
accommodate attributes like those considered in
Refs. [21,25] (excluding) and in Refs. [18,20] (nonexclud-
ing). It can also combine an arbitrary number of attributes
of different types, unlike approaches that can only deal with
single attributes [21,25] or, more often, with a single type
of attribute; and it naturally deals with missing attribute
data, unlike approaches that require all node attributes to
be known [17,22]. Since attributes are modeled with a
stochastic block model, our approach also automatically

clusters attributes that have similar effects on the data (for
example, age groups that show similar behavior) as in
Ref. [20]. Unlike most previous approaches for attributed
networks, nodes and attributes in our model belong to
mixtures of groups, which makes the model more expres-
sive [12]; links between nodes and to attributes can be
labeled; and the influence of the attributes can be adjusted
(as in Ref. [25]). As stated above, this last feature is
precisely the main focus of our work.

V. SYNTHETIC DATA

We first use synthetic data to validate the expectation-
maximization inference approach and to investigate the role
of introducing node attributes. Here and throughout the
validations in the coming sections, we quantify link
prediction performance by measuring rating prediction
accuracy, that is, the fraction of correctly predicted ratings
in cross-validation experiments.
Our synthetic rating networks consist of 200 users and

200 items, partitioned into K ¼ 2 groups of users and
L ¼ 4 groups of items. Users have an excluding attribute
labeled “male” or “female,” and items have an excluding
attribute labeled from 0 to 3, which may represent four
different genres. We generate the synthetic ratings rij ∈
f0; 1; 2g with the model depicted in the central part of
Fig. 1, the p matrices in Appendix C, and the membership
vectors that we describe next.
Attribute links are generated as follows. In the simplest

case, in which ratings and attributes are completely corre-
lated, all female users have membership vectors θf ¼
ð0.8; 0.2Þ; conversely, all male users have θm ¼ ð0.2; 0.8Þ.
Similarly, an itemwith attribute a has amembership of 0.8 to
group a and 0.067 to all other groups. To simulate partial
correlation c or even no correlation (c ¼ 0) between mem-
bership vectors and attributes, with probability 1 − c, we
reassign each node attribute to a value selected uniformly at
random among all possibilities (2 for users and 4 for items).
For the experiments reported in Fig. 2, we consider all

attribute links but only a number jROj ¼ 400 of observed
ratings (that is, 1% of all generated ratings). Although the
synthetic data are created with item genre as an excluding
attribute, we carry out the inference process assuming that
genre is a nonexcluding attribute. We do this for two
reasons. First, in the empirical data set discussed below,
most movies only have one assigned genre despite the fact
that they could (and sometimes do) have more than one.
Therefore, it seems reasonable to assign one genre and
evaluate if the algorithm discovers this pattern despite
having the freedom to assign several genres to each movie.
Second, no empirical data set can be expected to be drawn
exactly from a proposed generative model, so this provides
us with a way to validate the expressiveness of the model,
that is, its ability to fit data sets that were not drawn exactly
from the model.
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We infer the values of the model parameters using
the expectation-maximization equations, and we use the
inferred parameters to predict unobserved ratings in the
bipartite ratings network. We do this for different levels of
correlation c between the ratings and the attribute networks
(Fig. 2), from a situation c ¼ 1 in which the attributes are
perfectly correlated with user and item membership vectors
(all male users belong to one group and have identical

parameters, and all females belong to another group with
different parameters; items of the same genre belong to the
exact same mixture of groups) to a situation c ¼ 0 in which
user and item memberships and attributes are completely
uncorrelated (Fig. 2).
Since we focus on sparse observations in which the

number of observed ratings is low (only 1% of all ratings),
model parameters cannot be inferred accurately from the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2. Predictive performance and effect of metadata on synthetic ratings. We create synthetic ratings from 200 users on 200 items,
with different levels of correlation c between ratings and node attributes (see text). We then use fivefold cross-validation to calculate the
performance of the expectation-maximization equations at predicting unobserved ratings. We use accuracy a (that is, the fraction of
correctly predicted ratings) as our performance metric; we take as a reference the predictive accuracy a0 ¼ 0.468 of the algorithm when
all attributes are ignored (λuser ¼ λitem ¼ 0) and measure relative accuracy α for a given pair ðλuser; λitemÞ as the log-ratio
αðλuser; λitemÞ ¼ log ½aðλuser; λitemÞ=a0�. The value αðλuser; λitemÞ ¼ 0 (dashed line) thus indicates no change with respect to the reference
a0 ¼ 0.468, and αðλuser; λitemÞ > 0 [respectively, αðλuser; λitemÞ < 0] indicates predictions that are more (less) accurate than those
obtained by ignoring node attributes. The maximum possible relative performance (amax ¼ 0.580; dotted line) is obtained when each
rating is assigned the exact probability that was used to generate it. For each value of the correlation [(a,b) full correlation, c ¼ 1; (c,d)
c ¼ 0.75; (e,f) c ¼ 0.50; (g,h) no correlation, c ¼ 0], we show the variation of αðλuser; λitemÞ with λitem for different values of λuser (left),
and the whole dependence of αðλuser; λitemÞ on both λuser and λitem (right).
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ratings alone. Therefore, when we only consider the
observed ratings RO and ignore all attributes AO by setting
λuser ¼ λitem ¼ 0 in Eq. (9) (λuser and λitem correspond to the
user and item attribute networks, respectively), the pre-
diction of unobserved links is suboptimal; that is, the
inferred probabilities of unobserved links differ signifi-
cantly from the actual probabilities used to build the
network. Therefore, in this regime, λuser ¼ λitem ¼ 0, the
prediction accuracy (that is, the fraction of correctly
predicted ratings) is always lower than the theoretical
maximum accuracy (Fig. 2).
When there is perfect correlation between node attributes

and group memberships, considering the attributes AO by
setting λuser > 0 and λitem > 0 should, in principle, help in
the inference process. In fact, since attributes are perfectly
correlated to group memberships, in the limit λuser → ∞
and λitem → ∞, nodes will be forced into the correct groups
and predictions should be near optimal. This is what we
observe in our numerical experiments [Figs. 2(a) and 2(b)].
Interestingly, as we increase the weight of the attributes
in the log-posterior from λuser ¼ λitem ¼ 0, the effect on
prediction accuracy is not smooth. Rather, below certain
threshold values of λuser and λitem, using the attributes does
not have any significant effect on prediction accuracy.
Then, at those threshold values, a crossover occurs and
prediction accuracy increases after a certain point until it
reaches its theoretical maximum, as expected.
When attributes and ratings are completely uncorrelated

[Figs. 2(g) and 2(h)], the role of attributes is reversed.
Predictions are equally suboptimal at λuser ¼ λitem ¼ 0, but
then, as λuser and λitem cross certain threshold values,
predictions suddenly worsen as user and item nodes are
forced into groups that are uncorrelated with their real
membership vectors and, thus, with the observed ratings. In
this situation, clearly, treating metadata as ground truth
would be particularly misleading [23]; our approach
enables us to show when that would be the case.
Unlike the extreme cases of total correlation or zero

correlation, when attributes are partly correlated with the
true group memberships of the nodes, the change in
performance is not monotonic as we increase the impor-
tance of the attributes. As before, when λuser and λitem are
small enough, we observe no difference with the situation
in which the attributes are ignored entirely. In the other
limit, when λuser → ∞ and λitem → ∞, user and item nodes
are forced into groups that partly, but not perfectly, match the
true group memberships of the nodes, so the performance
may increase or decrease with respect to the situation with
no attributes, depending on whether the correlation is high
[Figs. 2(c) and2(d)] or low [Figs. 2(e) and2(f)].However, we
find that the most predictive models in this case are those at
intermediate values of λuser and λitem, precisely at the cross-
over regionwhere both the observed ratings and the observed
attributes play a role in determining the most plausible group
memberships.

VI. THEORETICAL INTERPRETATION
OF THE CROSSOVER

To better understand this crossover, we look at the
posterior of the two models corresponding to the maximum
a posteriori estimates for λuser ¼ λitem ¼ 0 and for λuser ¼
λitem → ∞ (Fig. 3). These are the most plausible models
when only data (ratings) and only metadata (attributes),
respectively, are taken into consideration.
If we draw upon the analogy between Bayesian statistics

and statistical mechanics [35,36], we can equate the log-
posterior to the (minus) free energy of a physical system
and interpret the crossover in terms of a transition in which
λ plays the role of the tuning (temperature-like) parameter.

(a)

(b)

(c)

(d)

FIG. 3. Crossover between data-dominated and metadata-
dominated inference regimes. For the synthetic data in Fig. 2,
we plot the log-posterior πðθ; η; ζ; p; q; q̂jRO; AOÞ as a function of
the hyperparameter λ ¼ λitem ¼ λuser for three models: the model
that maximizes the data likelihood LR, the model that maximizes
the metadata likelihood LA, and the model that maximizes the
posterior when two previous cases cross (that is, have equal
posteriors). The position of the crossing coincides with the
crossover and the maxima observed in Fig. 2.
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Within this framework, these extreme models are the
dominating maxima in the posterior landscape (or, by
analogy, the states of the system at the two sides of the
transition); therefore, the predictability crossover occurs
when the data-dominated and metadata-dominated log-
posteriors cross, that is, for a value λ� such that

LR
0 þ λ�LA

0 ¼ LR
∞ þ λ�LA

∞ ð10Þ

or

λ� ¼ LR
0 − LR

∞

LA
∞ − LA

0

: ð11Þ

Here, the subindex 0 (or ∞) indicates the quantities
corresponding to the model that maximizes the posterior
for λuser ¼ λitem ¼ 0 (respectively, λuser ¼ λitem → ∞), and
we group all attributes in a single term LA. As we show in
Fig. 3, we find that, indeed, the crossover in predictability
in Fig. 2 coincides (at least in order of magnitude) with the
point where the data-dominated and metadata-dominated
log-posteriors cross. This crossover is reminiscent of the
detectability transition in graph clustering, which is asso-
ciated to a similar crossover phenomenon between the
eigenvalues of certain matrices [28,29].
Importantly, all log-likelihoods are extensive quantities.

Therefore, the dependency on the number of observed
ratings NR and attributes NA can be made explicit by
defining intensive (that is, per-link) log-likelihoods
lR ¼ LR=NR and lA ¼ LA=NA. Then,

λ� ∼
NR

NA
; ð12Þ

and at the crossover λ�, we have that both LR ∼ NR and
λ�LA ∼ NR are of the same order. By considering Eq. (9),
we see that this must be the case. Indeed, for each attribute
network, we find three regimes—one dominated by the LR

term, one dominated by the LA term, and one in which
both terms are comparable. Unless there is perfect or
almost perfect correlation between attributes and node
memberships, any improvement in predictive power must
come from considering both the observed ratings and the
observed attributes, and therefore in the crossover region
that we have identified.

VII. REAL DATA

Finally, we analyze two empirical data sets and study
whether we observe the same behaviors as in the synthetic
data. First, we consider the 100-K MovieLens data set [37],
which contains 100 000 ratings of movies by users. Age
and gender attributes are available for users, which we
model as excluding attributes (Fig. 4). Movies have genre
attributes, which we model as nonexcluding attributes.

The relative weights of user and movie attributes are given
by the parameters λusers and λitems.
Just as in the synthetic networks with small but finite

correlation, we observe an intermediate value of λuser and
λitem that provides more accurate rating predictions than
either considering the observed ratings alone or considering
the node attributes alone. This behavior is similar when we
consider age only, gender only, or age and gender simulta-
neously. As in synthetic networks, the optimal combination
of rating data and node metadata occurs for values of λ such
that the ratings network and the attributes networks have
comparable contributions to the log-posterior.
Second, we consider a data set on the votes of 441

members of the U.S. House of Representatives in the
108th U.S. Congress [38] (Fig. 5). Between January 2003
and January 2005, these representatives voted on 1217
bills, casting one of 9 different types of vote, which,
following previous analyses, we simplify to Yes, No,
and Other [38]. In this data set, “users” are the represent-
atives and “items” are the bills. The ratings represent the
votes of the representatives on the bills. For representatives,
we have attribute data indicating their party and state,
which we model as excluding attributes. Although all
votes of all members are recorded in the data set (in total,

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Predictive performance and effect of metadata on the
MovieLens data set. As in Fig. 2, we take as a reference the
predictive accuracy a0 of the algorithm when all attributes
are ignored (λuser ¼ λitem ¼ 0), and we measure relative
accuracy α for a given pair ðλuser; λitemÞ as the log-ratio
αðλuser; λitemÞ ¼ log ½aðλuser; λitemÞ=a0�. Accuracy is the fraction
of correctly predicted ratings in cross-validation experiments, and
a0 ¼ 0.448. We consider three different attributes for user nodes:
(a,b) age; (c,d) gender; and (e,f) age and gender combined as a
single attribute. We plot the whole range of λuser (left) and zoom
into the intermediate (shaded) region of λuser in which predictions
are significantly more accurate than the reference (right).
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536 698 votes), for the purpose of our analysis, we infer the
parameters of the multipartite mixed-membership stochas-
tic block model using 1% of the data and predict the
remaining 99% (and repeat this using each 1% of the data
as the training set).
Again, the effects of introducing the attributes in the

inference process are very similar to those we encounter in
synthetic data (Fig. 5). When using only the state of the
representatives, we observe a behavior that is compatible
with small but finite correlation between attribute and
voting patterns since the optimal predictive performance
is observed at intermediate values of λuser. Rather, when we
consider party affiliation, we observe a behavior that is
compatible with almost perfect correlation between attrib-
ute and voting behavior. Indeed, in this case, the predictive
performance of the model increases monotonically with
λuser, with a crossover at λuser ≈ 1, just as for perfectly
correlated attributes in synthetic data. When state and party
are combined into a single excluding attribute (for example,
“Democrat from Texas” is a group), we observe a behavior
compatible with strong (but imperfect) correlation between
attributes and voting behavior. In this case, predictive
accuracy does not improve monotonically with λuser
because, for very large values, representatives are forced
into small groups that are more prone to fluctuations; that
is, the model overfits the data, thus worsening the pre-
dictive power with respect to considering large groups
associated to party affiliation alone.

VIII. CONCLUSION

There is ample evidence that using node metadata can
help solve network inference problems. As we have
discussed, several approaches have been proposed in recent
years to introduce node attributes into probabilistic network
models and to use them to make better inferences about, for
example, the group structure of networks or the existence of

unobserved interactions. In these approaches, node attrib-
utes are introduced either as part of a whole-system model
(including both the links between nodes and node attrib-
utes) or as priors over the parameters of the model for the
links (for example, as priors for the node group member-
ships that, in turn, determine the probability of the
existence of links). However, beyond the improvement
in performance that they may entail in a given task such as
group detection or link prediction, we know little about the
effect that node attributes have in the inference process.
Here, our goal has been to clarify this issue.
Regardless of whether attributes are introduced as part of

a whole model or as a prior for model parameters, they
appear in probabilistic models as additional terms in the
likelihood or the posterior. As we have shown, our results
depend on this simple observation alone—only when all
terms in these likelihoods or posteriors are comparable in
magnitude, or when attributes are perfectly correlated with
ratings, can we expect attributes to improve the inference
process. In this sense, our findings here may be expected to
be universal.
Our results are also general in that they should apply to

all model-based, probabilistic approaches to network infer-
ence problems and not only link prediction [39]. Indeed,
although, in general, the task of community detection is
different from link prediction, our probabilistic approach
to rating prediction involves obtaining the most plausible
assignment of nodes to (mixtures of) groups—we first
obtain the maximum a posteriori (MAP) partition of the
nodes into groups and then use that partition to make link
predictions [40]. Therefore, all our claims with regards to
the crossover apply equally to the MAP estimation of node
partitions with our model. By extension, our results also
apply to all probabilistic approaches to community detec-
tion in which data and metadata enter in the likelihood or
posterior as separate, competing terms.
From a practical point of view, our work helps us to

understand when certain approaches will not work. For
example, our results suggest that modeling data and
metadata jointly will only improve link predictions (or
other network inference problems) if two conditions are
fulfilled simultaneously: (i) The metadata are correlated to
the data; and (ii) the balance between the amount of data
and metadata is such that their likelihoods (LR and LA

above) are of the same order. If the first condition is not
fulfilled, using metadata will, in general, worsen predic-
tions rather than improving them; if the second condition is
not fulfilled, one may, in practice, inadvertently ignore
either the data or the metadata and thus make, again,
suboptimal predictions.
Some works have intuitively addressed this problem

by introducing tuning parameters akin to our λk [18,25].
However, the impact of those parameters has not been
studied in detail; instead, their values are typically chosen
among a very limited set by means of cross-validation.

FIG. 5. Predictive performance and effect of metadata on the
U.S. Congress data set. As in Fig. 2, we take as a reference the
predictive accuracy a0 of the algorithm when all attributes are
ignored (λuser ¼ 0) and measure relative accuracy α for a given
λuser as the log-ratio αðλuserÞ ¼ log ½aðλuserÞ=a0�. Accuracy is the
fraction of correctly predicted ratings in cross-validation experi-
ments, and a0 ¼ 0.677. We consider three different attributes for
user nodes: party, state, and party and state simultaneously.
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Our work clarifies how the value of those parameters
should be chosen and why.
Our work may also suggest new questions to investigate.

For example, we have shown that the phenomenology we
observe is driven by a crossover of posteriors, similar to the
crossover of eigenvalues driving the detectability transition
in community detection. There, connectivity correlations
can affect the transition in counterintuitive ways [28,29].
So, perhaps in the case of metadata, there are similar
effects, and the distribution of attributes among nodes
(correlated or anticorrelated with the amount of data
available for each node) shifts the optimal metadata weight
or makes metadata more or less useful, in general. These
are important practical questions.
From a broader perspective, our work opens the door to

understanding the role of different terms in probabilistic
networkmodels, as well as the crossovers that occur between
the regimes inwhichone termor another dominates.This sets
the stage for more systematic approaches to building better
probabilistic models of network systems.
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APPENDIX A: EXPECTATION-MAXIMIZATION
EQUATIONS

Weaim tomaximize theparametric log-posterior inEq. (9)
as a function of the model parameters θ, η, p, ζ, q, and q̂.
Because logarithms of sums are hard to deal with, we use a
variational trick that first introduces an auxiliary distribution
pðxÞ with

P
x pðxÞ ¼ 1 into a sum of terms as

P
x x ¼P

x pðxÞ(x=pðxÞ). Then, because
P

x pðxÞ(x=pðxÞ) ¼
hx=pðxÞi, we can use Jensens’ inequality loghyi ≥ hlog yi
to write log ½Px pðxÞ(x=pðxÞ)� ≥

P
x pðxÞ log ½x=pðxÞ�.

Because both rating and attribute terms in Eq. (9) contain
logarithms of sums, we introduce an auxiliary distribution
for each of the terms as follows. For the ratings, we have

LR ¼
X

ði;jÞ∈RO

log
X
αβ

θiαηjβpαβðrOijÞ

¼
X

ði;jÞ∈RO

log
X
αβ

ωijðα; βÞ
θiαηjβpαβðrOijÞ

ωijðα; βÞ

≥
X

ði;jÞ∈RO

X
αβ

ωijðα; βÞ log
θiαηjβpαβðrOijÞ

ωijðα; βÞ
; ðA1Þ

where ωijðα; βÞ is the auxiliary distribution.
For the term corresponding to excluding node attributes,

we have

LAk ¼
X

ði;lkÞ∈AO
k

log
X
α

θiαqkαðilkÞ

¼
X

ði;lkÞ∈AO
k

log
X
α

σkilkðαÞ
θiαqkαðilkÞ
σilkðαÞ

≥
X

ði;lkÞ∈AO
k

X
α

σkilkðαÞ log
θiαqkαðilkÞ
σkilkðαÞ

; ðA2Þ

where σkilkðαÞ is the auxiliary distribution, and to simplify
the notation, we have defined qkαðilkÞ≡ qkα(ðeOk Þilk

).
Finally, for the term corresponding to nonexcluding node

attributes, we have

LAk ¼
X

ði;gÞ∈AO
k

log
X
αγ

θiαζ
k
gγq̂αγðigÞ

¼
X

ði;gÞ∈AO
k

log
X
αγ

σ̂kigðα; γÞ
θiαζ

k
gγq̂αγðigÞ

σ̂kigðα; γÞ

≥
X

ði;gÞ∈AO
k

X
αγ

σ̂kigðα; γÞ log
θiαζ

k
gγq̂αγðigÞ

σ̂kigðα; γÞ
; ðA3Þ

where σ̂kigðα; γÞ is the auxiliary distribution, and to simplify
the notation, we have defined q̂kαðigÞ≡ q̂kαγð(aOk Þig).
Note that, in Eqs. (A1)–(A3) above, the equality is

satisfied when maximizing with respect to the auxiliary
distributions. By solving these optimization problems, we
obtain

ωijðα; βÞ ¼
θiαηjβpαβðrOijÞP

α0β0θiα0ηjβ0pα0β0 ðrOijÞ
; ðA4Þ

σkilkðαÞ ¼
θiαqkαðilkÞP
α0θiα0q

k
α0 ðilkÞ

; ðA5Þ

σ̂kigðα; γÞ ¼
θiαζ

k
gγq̂αγðigÞP

α0γ0θiα0ζgγ0 q̂α0γ0 ðigÞ
: ðA6Þ

Therefore, the auxiliary distributions have the following
interpretations: ωijðα; βÞ is the contribution of user group α
and item group β to the probability that user i gives item j a
rating rOij; σ

k
ilk
ðαÞ is the contribution of user group (or item

group) α to the probability that user (item) i has attribute
type ðeOk Þilk in the kth excluding attribute; and, finally,
σ̂kigðα; γÞ is the contribution of groups α and γ to the
probability that, for the kth nonexcluding attribute, the
association between node i and attribute g is of type ðaOk Þig.
Using Lagrange multipliers for the normalization con-

straints and equating to zero the derivatives of the log-
posterior with respect to the model parameters yields
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θiα ¼
P

j∈∂i
P

β ωijðα; βÞ þ
P

kλkσ
k
ilk
ðαÞ þP

lλl
P

g∈∂ik
P

γ σ̂
l
igðα; γÞ

di þ
P

kλkδ
k
i þ

P
lλlΔl

i
; ðA7Þ

where ∂k
i is the set of kth attributes associated with user i, di is the degree of user i in the network of ratings, and Δl

i ¼ j∂i
lj.

Note that the term σkilkðαÞ is equal to zero if user i does not have attribute lk, so δki ¼ 1 if user i has exclusive attribute lk

and zero otherwise:

ηjβ ¼
P

i∈∂j
P

α ωijðα; βÞ þ
P

kλkσ
k
jlk

ðβÞ þP
lλl
P

i∈∂kj
P

γ σ̂
l
ijðβ; γÞ

dj þ
P

kλkδ
k
j þ

P
lλlΔl

j
ðA8Þ

where ∂k
j is the set of kth attributes associated with item j,

dj is the degree of item j in the network of ratings, and
Δl

j ¼ j∂j
lj. As before, the term σkjlkðβÞ is equal to zero if

item j does not have attribute lk, so δkj ¼ 1 if item j has
exclusive attribute lk and zero otherwise,

ζkgγ ¼
P

i∈∂kg
P

α σ̂
k
igðα; γÞ

Δk
g

; ðA9Þ

where ∂k
g is the set of nodes associated with attribute g, and

Δk
g ¼ j∂g

kj. Additionally, we have

pαβðrÞ ¼
P

ði;jÞ∈ROjr0ij¼rωijðα; βÞP
ði;jÞ∈ROωijðα; βÞ

; ðA10Þ

qkαðeÞ ¼
P

ði;lkÞ∈AO
k jðeOk Þilk¼eσ

k
ilk
ðαÞP

ði;lkÞσ
k
ilk
ðαÞ ; ðA11Þ

q̂kαγðaÞ ¼
P

ði;gÞ∈AO
k jðaOk Þig¼aσ̂

k
igðα; γÞP

ði;gÞ∈AO
k
σ̂kigðα; γÞ

: ðA12Þ

APPENDIX B: EXPECTATION-MAXIMIZATION
ALGORITHM

To obtain a maximum of the posterior, we start by
generating random initial conditions for each model
parameter θ; η; p; ζ; q; q̂.
Then, we iteratively perform the following two steps

until model parameters converge:
(1) Expectation step: Compute the auxiliary functions

ωijðα; βÞ, σkilkðαÞ, and σ̂kigðα; γÞ using current values
for θ; η; p; ζ; q; q̂ using Eqs. (A.4)–(A.6).

(2) Maximization step: Compute the new values for the
model parameters using the values for the auxiliary
functions and Eqs. (A.7)–(A.12).

Because the posterior landscape is very rugged, to
make predictions, we run the EM algorithm 10 times
and consider all of the models to estimate the probability

that user i rates item j with rating r (see Ref. [12]) as
follows:

pðrij ¼ rjRO; AO
k Þ ≈

1

N

XN
n¼1

pn(rij ¼ rjRO; AO
k ; ð…Þ);

ðB1Þ

where ð…Þ¼ fθ;η;p;ζ;q; q̂g, and pn(rij¼ rjRO;AO
k ;ð…Þ)

is the probability that user i rates item j with rating r in run
n of the EM algorithm.

APPENDIX C: PARAMETERS FOR
GENERATING SYNTHETIC DATA

For the generation of synthetic data, we use the following
group-to-group connection probability matrices:

pðr ¼ 0Þ ¼
�
0.1 0.1 0.1 0.8

0.8 0.1 0.1 0.1

�
;

pðr ¼ 1Þ ¼
�
0.1 0.1 0.8 0.1

0.1 0.8 0.1 0.1

�
;

pðr ¼ 2Þ ¼
�
0.8 0.8 0.1 0.1

0.1 0.1 0.8 0.8

�
:
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