
As much as 80% of the LHC antenna is mobile in Chlamydomo-
nas during state transitions25, whereas in land plants the mobile
fraction of LHCII is only 15–20%3. In spite of this relatively low
value, our study shows that in land plants the STN7 kinase, and
probably state transitions, are important for adaptation and that in
their absence growth is significantly impaired under conditions in
which light quality and quantity change frequently. This points to
the importance of state transitions in a natural environment where
plants are often subjected to light fluctuations of this sort. A

Methods
Plant material
Arabidopsis thaliana (L.) ecotype Columbia (Col-0) was used for all experiments. Plants
were grown under controlled conditions of light (50 or 160 mmol m22 s21; 8 h or 12 h
photoperiods, 23/20 8C day/night, and relative air humidity of 50–70%).

All physiological and biochemical analyses were performed with rosette leaves
harvested before flowering. We obtained the T-DNA insertion lines in the Columbia
background for At1g68830 (SALK 073254) and At5g01920 (SALK 060869 and SALK
064913) from the Salk Institute (see Supplementary Information for the characterization
of these lines and for the DNA, RNA, protein and chlorophyll analyses).

State transitions and NPQ
State transitions and NPQ were measured as described11,26 (see Supplementary
Information for details).

Photosynthetic measurements
Photosynthetic gas exchange and chlorophyll fluorescence measurements were
simultaneously performed on detached leaves using a LI-6400 portable photosynthesis
system equipped with a 6400-40 fluorometer (LI-COR Biosciences) (for details see
Supplementary Information). PSII light was obtained with cool white fluorescent lamps
(Osram L18W/20) with orange 105 Lee filters and PSI light was obtained with red
fluorescent lamps (Osram L18W/60) with red 027 Lee filters. Chlorophyll fluorescence
emission spectra of thylakoid membrane suspensions were recorded in liquid nitrogen
(77 K) as described27,28 (see Supplementary Information).

In vivo and in vitro phosphorylation of the LHCII antennae
Leaves from dark-acclimated plants, floating on water, were exposed to low light
(80 mmol m22 s21) or kept in the dark for 30 min29. Thylakoid membranes were isolated
from the dark-incubated and illuminated leaves as described27 in the presence of 10 mM
NaF to inhibit phospho-LHCII phosphatase activity. Thylakoids were re-suspended in
assay buffer consisting of 50 mM HEPES-KOH pH 7.5, 100 mM sucrose, 5 mM NaCl,
10 mM MgCl2 and 10 mM NaF at a final chlorophyll concentration of 0.4 mg ml21.

After dark adaptation, thylakoids were isolated from plants according to ref. 30, and re-
suspended in storage buffer (100 mM sorbitol, 5 mM MgCl2, 5 mM NaCl and 50 mM
HEPES/KOH pH 7.5). They were used as substrate for the kinase assay. Thylakoid
membrane proteins equivalent to 8mg of chlorophyll were subjected to a 20 min light
induction (80 mmol m22 s21) at 25 8C in the presence of 10mCi [g-32P]ATP (Amersham
3,000 Ci mmol21), 0.4 mM ATP and 10 mM NaF in 100ml of storage buffer29. Reactions
were terminated by centrifugation, washing twice in storage buffer and addition of
denaturing sample buffer, and were electrophoresed on 12% polyacrylamide-SDS gels,
and finally analysed with a phosphorimager.
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High-throughput techniques are leading to an explosive growth
in the size of biological databases and creating the opportunity
to revolutionize our understanding of life and disease. Interpre-
tation of these data remains, however, a major scientific chal-
lenge. Here, we propose a methodology that enables us to extract

letters to nature

NATURE | VOL 433 | 24 FEBRUARY 2005 | www.nature.com/nature 895
© 2005 Nature Publishing Group 

 



and display information contained in complex networks1–3.
Specifically, we demonstrate that we can find functional mod-
ules4,5 in complex networks, and classify nodes into universal
roles according to their pattern of intra- and inter-module
connections. The method thus yields a ‘cartographic represen-
tation’ of complex networks. Metabolic networks6–8 are among
the most challenging biological networks and, arguably, the ones
with most potential for immediate applicability9. We use our
method to analyse the metabolic networks of twelve organisms
from three different superkingdoms. We find that, typically, 80%
of the nodes are only connected to other nodes within their
respective modules, and that nodes with different roles are
affected by different evolutionary constraints and pressures.
Remarkably, we find that metabolites that participate in only a
few reactions but that connect different modules are more
conserved than hubs whose links are mostly within a single
module.

If we are to extract the significant information from the topology
of a large, complex network, knowledge of the role of each node is of
crucial importance. A cartographic analogy is helpful to illustrate
this point. Consider the network formed by all cities and towns in a
country (the nodes) and all the roads that connect them (the links).
It is clear that a map in which each city and town is represented by a
circle of fixed size and each road is represented by a line of fixed
width is hardly useful. Rather, real maps emphasize capitals and
important communication lines so that we can obtain scale-specific
information at a glance. Similarly, it is difficult, if not impossible, to
obtain information from a network with hundreds or thousands of
nodes and links, unless the information about nodes and links is
conveniently summarized. This is particularly true for biological
networks.

Here, we propose a methodology, which is based on the connec-
tivity of the nodes, that yields a cartographic representation of a
complex network. The first step in our method is to identify the
functional modules4,5 in the network. In the cartographic picture,
modules are analogous to countries or regions, and enable a coarse-
grained, and thus simplified, description of the network. Then we
classify the nodes in the network into a small number of system-
independent ‘universal roles’.

It is common that social networks have communities of highly
interconnected nodes that are less connected to nodes in other
communities. Such modular structures have been reported not only
in social networks5,10–12, but also in food webs13 and biochemical
networks4,14–16. It is widely believed that the modular structure of
complex networks plays a critical role in their functionality4,14,16.
There is therefore a clear need to develop algorithms to identify
modules accurately5,11,17–20.

We identify modules by maximizing the network’s modu-
larity11,18,21 using simulated annealing22 (see Methods). Simulated
annealing enables us to perform an exhaustive search and to
minimize the problem of finding sub-optimal partitions. It is
noteworthy that, in our method, we do not need to specify a priori
the number of modules; rather, this number is an outcome of the
algorithm. Our algorithm is able to reliably identify modules in a
network whose nodes have as many as 50% of their connections
outside their own module (Fig. 1).

When considering modular networks, it is plausible to surmise
that the nodes in a network are connected according to the role they
fulfil. This fact has been long recognized in the analysis of social
networks23. For example, in a classical hierarchical organization, the
chief executive is not directly connected to plant employees but is
connected to the members of the board of directors. Such a

Figure 1 Performance of module identification methods. To test the performance of the

method, we build ‘random networks’ with known module structure. Each test network

comprises 128 nodes divided into 4 modules of 32 nodes. Each node is connected to the

other nodes in its module with probability pi, and to nodes in other modules with

probability po , pi. On average, thus, each node is connected to k out ¼ 96 po nodes in

other modules and to k in ¼ 31 pi in the same module. Additionally, pi and po are selected

so that the average degree of the nodes is k ¼ 16. We display networks with: a, k in ¼ 15

and k out ¼ 1; b, k in ¼ 11 and k out ¼ 5; and c, k in ¼ k out ¼ 8. d, The performance of

a module identification algorithm is typically defined as the fraction of correctly classified

nodes. We compare our algorithm to the Girvan–Newman algorithm5,18, which is the

reference algorithm for module identification11,18,19. Note that our method is 90% accurate

even when half of a node’s links are to nodes in outside modules. e, Our module-

identification algorithm is stochastic, so different runs yield, in principle, different

partitions. To test the robustness of the algorithm, we obtain 100 partitions of the network

depicted in c and plot, for each pair of nodes in the network, the fraction of times that they

are classified in the same module. As shown in the figure, most pairs of nodes are either

always classified in the same module (red) or never classified in the same module (dark

blue), which indicates that the solution is robust.
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statement holds for virtually any organization; that is, the role of
chief executive is defined irrespective of the particular organization
considered.

We propose a new method to determine the role of a node in a
complex network. Our approach is based on the idea that nodes
with the same role should have similar topological properties24 (see
Supplementary Information for a discussion on how our approach
relates to previous work). We predict that the role of a node can be
determined, to a great extent, by its within-module degree and its
participation coefficient, which define how the node is positioned in
its own module and with respect to other modules25,26 (see
Methods). These two properties are easily computed once the
modules of a network are known.

The within-module degree z i measures how ‘well-connected’
node i is to other nodes in the module. High values of z i indicate
high within-module degrees and vice versa. The participation
coefficient Pi measures how ‘well-distributed’ the links of node i
are among different modules. The participation coefficient P i is
close to 1 if its links are uniformly distributed among all the
modules, and 0 if all its links are within its own module.

We define heuristically seven different universal roles, each
defined by a different region in the z–P parameter space (Fig. 2).
According to the within-module degree, we classify nodes with
z $ 2.5 as module hubs and nodes with z , 2.5 as non-hubs. Both
hub and non-hub nodes are then more finely characterized by using
the values of the participation coefficient (see Supplementary
Information for a detailed justification of this classification scheme,
and for a discussion on possible alternatives).

We find that non-hub nodes can be naturally divided into four
different roles: (R1) ultra-peripheral nodes; that is, nodes with all
their links within their module (P # 0.05); (R2) peripheral nodes;
that is, nodes with most links within their module (0.05
,P # 0.62); (R3) non-hub connector nodes; that is, nodes with
many links to other modules (0.62 , P # 0.80); and (R4) non-hub
kinless nodes; that is, nodes with links homogeneously distributed
among all modules (P . 0.80). We find that hub nodes can be
naturally divided into three different roles: (R5) provincial hubs;
that is, hub nodes with the vast majority of links within their
module (P # 0.30); (R6) connector hubs; that is, hubs with many
links to most of the other modules (0.30 , P # 0.75); and (R7)
kinless hubs; that is, hubs with links homogeneously distributed
among all modules (P . 0.75).

To test the applicability of our approach to complex biological
networks, we consider the cartographic representation of
the metabolic networks6–9,14 of twelve organisms: four bacteria
(Escherichia coli, Bacillus subtilis, Lactococcus lactis and Therma-
synechococcus elongatus), four eukaryotes (Saccharomyces cerevisiae,
Caenorhabditis elegans, Plasmodium falciparum and Homo sapiens),
and four archaea (Pyrococcus furiosus, Aeropyrum pernix, Archaeo-
globus fulgidus and Sulfolobus solfataricus). In metabolic networks,
nodes represent metabolites and two nodes i and j are connected by
a link if there is a chemical reaction in which i is a substrate and j
a product, or vice versa. In our analysis, we use the database
developed by Ma and Zeng8 (MZ) from the Kyoto Encyclopedia
of Genes and Genomes27 (KEGG). The results we report are not
altered if we consider the complete KEGG database instead (Figs 2c
and 4b, and Supplementary Information).

First, we identify the functional modules in the different meta-
bolic networks (Fig. 3). Finding modules in metabolic networks
purely on the basis of topological properties is an extremely
important task. For example, Schuster et al. have reported on the
impossibility of obtaining elementary flux modes28 from complete
metabolic networks due to the combinatorial explosion of the
number of such modes29. Our algorithm identifies an average of
15 different modules in each metabolic network—with a maximum
of 19 for E. coli and H. sapiens, and a minimum of 11 for A. fulgidus.
As expected, the density of links within each of the modules is

significantly larger than between modules—typically 100–1,000
times larger (see Supplementary Information).

To assess how each of the modules is related to the pathways
traditionally defined in biology, we use the classification scheme
proposed in KEGG, which includes nine major pathways: carbo-
hydrate metabolism, energy metabolism, lipid metabolism, nucleo-
tide metabolism, amino-acid metabolism, glycan biosynthesis and
metabolism, metabolism of cofactors and vitamins, biosynthesis of
secondary metabolites and biodegradation of xenobiotics. Each
metabolite in the KEGG database is assigned to at least one pathway;
thus, we can determine to which pathways the metabolites in a given

Figure 2 Roles and regions in the z–P parameter space. a, Each node in a network can be

characterized by its within-module degree and its participation coefficient (see Methods

for definitions). We classify nodes with z $ 2.5 as module hubs and nodes with z , 2.5

as non-hubs. We find that non-hub nodes can be naturally assigned into four different

roles: (R1) ultra-peripheral nodes; (R2) peripheral nodes; (R3) non-hub connector nodes;

and (R4) non-hub kinless nodes. We find that hub nodes can be naturally assigned into

three different roles: (R5) provincial hubs; (R6) connector hubs; and (R7) kinless hubs (see

text and Supplementary Information for details). b, Metabolite role determination for the

metabolic network of E. coli, as obtained from the MZ database. Each metabolite is

represented as a point in the z–P parameter space, and is coloured according to its role.

c, Same as b but for the complete KEGG database.
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module belong. We find that most modules contain metabolites
mostly from one major pathway. For example, in 17 of the 19
modules identified for E. coli, more than one-third of the metabo-
lites belong to a single pathway. Interestingly, some other mod-
ules—two in the case of E. coli—cannot be trivially associated with a
single traditional pathway. These modules are typically central in the
metabolism and contain, mostly, metabolites that are classified in
KEGG as belonging to carbohydrate and amino-acid metabolism.

Next we identify the role of each metabolite. In Fig. 2b we show
the roles identified in the metabolic network of E. coli. Other
organisms show a similar distribution of the nodes in the different
roles, even though they correspond to organisms that are very
distant from an evolutionary standpoint (see Supplementary Infor-
mation). Role R1, which contains ultra-peripheral metabolites with
small degree and no between-module links, comprises 76–86% of all
the metabolites in the networks. This considerably simplifies the
coarse-grained representation of the network as these nodes do not
need to be identified separately. Note that this finding alone
represents an important step towards the goal of extracting scale-
specific information from complex networks.

The information about modules and roles enables us to build
a cartographic representation of the metabolic network of, for
example, E. coli (Fig. 3). This representation enables us to recover
relevant biological information. For instance, we find that the
metabolism is mostly organized around the module containing
pyruvate, which in turn is strongly connected to the module whose
hub is acetyl-coenzyme A (CoA). These two molecules are key to
connecting the metabolism of carbohydrates, amino acids and lipids
to the tricarboxylic acid (TCA) cycle from which ATP is obtained.

These two modules are connected to more peripheral ones by key
metabolites such as D-glyceraldehyde 3-phosphate and D-fructose
6-phosphate (which connect to the glucose and galactose metabo-
lisms), D-ribose 5-phosphate (which connects to the metabolism of
certain nucleotides), and glycerone phosphate (which connects to
the metabolism of certain lipids).

Our analysis also uncovers nodes with key connector roles that
take part in only a small but fundamental set of reactions. For
example, N-carbamoyl-L-aspartate takes part in only three reactions
but is vital because it connects the pyrimidine metabolism, whose
hub is uracil, to the core of the metabolism through the alanine and
aspartate metabolism. The potential importance of such non-hub
connectors points to another consideration. It is a plausible
hypothesis that nodes with different roles are under different
evolutionary constraints and pressures. In particular, we expect
that nodes with structurally relevant roles are more necessary and
therefore more conserved across species.

To quantify the relation between roles and conservation, we
define the loss rate p lost(R) (see Methods). Structurally relevant
roles are expected to have low values of p lost(R) and vice versa. We
find that the different roles have different loss rates (Fig. 4). As
expected, ultra-peripheral nodes (role R1) have the highest loss rate
whereas connector hubs (role R6) are the most conserved across all
species considered.

The results for the comparison of p lost(R) for ultra-peripheral
nodes and connector hubs is illustrative, but hardly surprising. The
comparison of p lost(R) for non-hub connectors (role R3) and
provincial hubs (role R5), however, yields a surprising finding. The
metabolites in the provincial hubs class have many within-module

Figure 3 Cartographic representation of the metabolic network of E. coli. Each circle

represents a module and is coloured according to the KEGG pathway classification of the

metabolites it contains. Certain important nodes are depicted as triangles (non-hub

connectors), hexagons (connector hubs) and squares (provincial hubs). Interactions

between modules and nodes are depicted using lines, with thickness proportional to the

number of actual links. Inset: metabolic network of E. coli, which contains 473 metabolites

and 574 links. This representation was obtained using the program Pajek. Each node is

coloured according to the ‘main’ colour of its module, as obtained from the cartographic

representation.
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connections, sometimes as many as five standard deviations more
connections than the average node in the module. Conversely, non-
hub connector metabolites have few links relative to other nodes in
their modules—and fewer total connections than the metabolites in
role R5 (see Supplementary Fig. S12b, c). The links of non-hub
connectors, however, are distributed among several different

modules, whereas the links of provincial hubs are mainly within
their modules. We find that non-hub connectors are systematically
and significantly more conserved than provincial hub metabolites
(Fig. 4).

A possible explanation for the high degree of conservation of
non-hub connectors is as follows. Connector nodes are responsible
for inter-module fluxes. These modules are otherwise poorly con-
nected or not connected at all to each other, so the elimination of
connector metabolites will probably have a large impact on the
global structure of fluxes in the network. On the contrary, the
pathways in which provincial hubs are involved may be backed
up within the module in such a way that elimination of these
metabolites may have a comparatively smaller impact, which in
addition would probably be confined to the module containing the
provincial hub.

Our results therefore point to the need to consider each complex
biological network as a whole, instead of focusing on local proper-
ties. In protein networks, for example, it has been reported that hubs
are more essential than non-hubs30. Notwithstanding the relevance
of such a finding, our results suggest that the global role of nodes in
the network might be a better indicator of their importance than
degree26.

Our ‘cartography’ provides a scale-specific method to process the
information contained in the structure of complex networks, and to
extract knowledge about the function performed by the network
and its constituents. An open question is how to adapt current
module-detection algorithms to networks with a hierarchical
structure.

For metabolic networks—a comparatively well studied and well
understood case—our method allows us to recover firmly estab-
lished biological facts, and to uncover important new results, such
as the significant conservation of non-hub connector metabolites.
Similar results can be expected when our method is applied to
other complex networks that are not as well studied as metabolic
networks. Among those, protein interaction and gene regulation
networks may be the most significant. A

Methods
Modularity
For a given partition of the nodes of a network into modules, the modularity M of this
partition is11,18,21:

M ;
XNM

s¼1

ls
L
2

ds

2L

� �2
" #

ð1Þ

where NM is the number of modules, L is the number of links in the network, l s is the
number of links between nodes in module s, and ds is the sum of the degrees of the nodes in
module s. The rationale for this definition of modularity is the following. A good partition
of a network into modules must comprise many within-module links and as few as
possible between-module links. However, if we just try to minimize the number of
between-module links (or, equivalently, maximize the number of within-module links)
the optimal partition consists of a single module and no between-module links. Equation
(1) addresses this difficulty by imposing that M ¼ 0 if nodes are placed at random into
modules or if all nodes are in the same cluster11,18,21.

The objective of a module identification algorithm is to find the partition with largest
modularity, and several methods have been proposed to attain such a goal. Most of them
rely on heuristic procedures and use M, or a similar measure, only to assess their
performance. In contrast, we use simulated annealing22 to find the partition with the
largest modularity.

Simulated annealing for module identification
Simulated annealing22 is a stochastic optimization technique that enables you to find ‘low-
cost’ configuration without getting trapped in ‘high-cost’ local minima. This is achieved
by introducing a computational temperature T. When T is high, the system can explore
configurations of high cost whereas at low T the system only explores low-cost regions. By
starting at high T and slowly decreasing T, the system descends gradually towards deep
minima, eventually overcoming small cost barriers.

When identifying modules, the objective is to maximize the modularity, and thus the
cost is C ¼ 2M, where M is the modularity as defined in equation (1). At each
temperature, we perform a number of random updates and accept them with probability:
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T
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Figure 4 Roles of metabolites and inter-species conservation. To quantify the relation

between roles and conservation, we calculate the loss rate p lost(R ) of each metabolite (see

Methods). Each thin line in the graph corresponds to a comparison between two species.

Because we are interested in metabolites that are present in some species but missing in

others, metabolic networks of species within the same superkingdom—bacteria,

eukaryotes and archaea—are usually too similar to provide statistically sound information,

especially for roles containing only a few metabolites. Therefore, we consider in our

analysis only pairs of species that belong to different superkingdoms. The thick line is the

average over all pairs of species. The loss rate p lost(R ) is maximum for ultra-peripheral

(R1) nodes and minimum for connector hubs (R6). Provincial hubs (R5) have a significantly

and consistently higher p lost(R ) than non-hub connectors (R3), even though the within-

module degree and the total degree of provincial hubs is larger. Note that, out of the total

48 pair comparisons, only in two cases is p lost(R ) lower for provincial hubs than for non-

hub connectors, whereas the opposite is true in 44 cases. a, b, Results obtained for the

MZ database (a) and the complete KEGG database (b).
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where C f is the cost after the update and Ci is the cost before the update.
Specifically, at each T we propose n i ¼ fS2 individual node movements from one

module to another, where S is the number of nodes in the network. We also propose
nc ¼ fS collective movements, which involve either merging two modules or splitting a
module. For f we typically choose f ¼ 1. After the movements are evaluated at a certain T,
the system is cooled down to T

0
¼ cT, with c ¼ 0.995.

Within-module degree and participation coefficient
Each module can be organized in very different ways, ranging from totally centralized—
with one or a few nodes connected to all the others—to totally decentralized, with all nodes
having similar connectivities. Nodes with similar roles are expected to have similar relative
within-module connectivity. If k i is the number of links of node i to other nodes in its
module s i, �ksi

is the average of k over all the nodes in s i, and jksi
is the standard deviation of

k in s i, then:

zi ¼
ki 2 �ksi

jksi

ð3Þ

is the so-called z-score. The within-module degree z-score measures how well-connected
node i is to other nodes in the module.

Different roles can also arise because of the connections of a node to modules other
than its own. For example, two nodes with the same z-score will play different roles if one
of them is connected to several nodes in other modules while the other is not. We define
the participation coefficient Pi of node i as:

Pi ¼ 12
XNM

s¼1

kis

ki

� �2

ð4Þ

where k is is the number of links of node i to nodes in module s, and k i is the total degree of
node i. The participation coefficient of a node is therefore close to 1 if its links are
uniformly distributed among all the modules and 0 if all its links are within its own
module.

Loss rate
To quantify the relation between roles and conservation, we calculate to what extent
metabolites are conserved in the different species depending on the role they play.
Specifically, for a pair of species, A and B, we define the loss rate as the probability
p(R A ¼ 0jR B ¼ R) ; p lost(R) that a metabolite is not present in one of the species
(R A ¼ 0) given that it plays role R in the other species (R B ¼ R). Structurally relevant roles
are expected to have low values of p lost(R) and vice versa.
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