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A comprehensive study on 
different modelling approaches to 
predict platelet deposition rates in 
a perfusion chamber
Jordi Pallarès1,*, Oriol Senan2,*, Roger Guimerà2,3, Anton Vernet1, Antoni Aguilar-Mogas2, 
Gemma Vilahur4, Lina Badimon4, Marta Sales-Pardo2 & Salvatore Cito5

Thrombus formation is a multiscale phenomenon triggered by platelet deposition over a 
protrombotic surface (eg. a ruptured atherosclerotic plaque). Despite the medical urgency for 
computational tools that aid in the early diagnosis of thrombotic events, the integration of 
computational models of thrombus formation at different scales requires a comprehensive 
understanding of the role and limitation of each modelling approach. We propose three different 
modelling approaches to predict platelet deposition. Specifically, we consider measurements of 
platelet deposition under blood flow conditions in a perfusion chamber for different time periods (3, 
5, 10, 20 and 30 minutes) at shear rates of 212 s−1, 1390 s−1 and 1690 s−1. Our modelling approaches 
are: i) a model based on the mass-transfer boundary layer theory; ii) a machine-learning approach; 
and iii) a phenomenological model. The results indicate that the three approaches on average have 
median errors of 21%, 20.7% and 14.2%, respectively. Our study demonstrates the feasibility of using 
an empirical data set as a proxy for a real-patient scenario in which practitioners have accumulated 
data on a given number of patients and want to obtain a diagnosis for a new patient about whom 
they only have the current observation of a certain number of variables.

Thrombosis is the main responsible for the leading causes of mortality and morbidity worldwide: heart 
attack and ischemic stroke1. Thrombus formation is an extremely complex pathological process that 
starts upon platelet interaction with the exposed vascular thrombogenic surface upon atherosclerotic 
plaque rupture. Concomitantly, tissue factor exposure triggers the activation of the coagulation cascade 
and thrombin formation further promoting platelet activation and aggregation. Thrombin, in turn, also 
leads to fibrin formation and thrombus stabilization.

Experimental evidence shows that platelet activation and deposition depends on hemodynamic and 
rheological variables such as shear rate, shear stress2, red blood cell margination3,4, exposed substrate 
(subendothelium, collagen, tendon, etc.) and local concentration of activated platelets and pro-thrombotic 
factors5,6. Despite the development of several theoretical models that describe the many contributors to 
thrombus formation and growth7, with special emphasis on the platelet aggregation process3,8–12 as well 
as the spatial and temporal aspects of early stage thrombus dynamics13, the role of each of the aforemen-
tioned variables on thrombus formation is still not clear thus hindering the development of comprehen-
sive and computationally fast multiscale models14–16.
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In view of this challenge, and as a first step towards the understanding of the role and limitations of 
different modelling approaches for thrombus formation, our goal is to compare distinct computation-
ally fast approaches to predict platelet deposition levels. While platelet deposition has been extensively 
studied, especially within the hemodynamics literature17–20, very little emphasis has been placed on the 
assessment of the predictive power of such models. Specifically on the evaluation of whether models 
adjusted to a set of empirical data (training data set) provide a good description of a different empirical 
data set (test data set). To a large extent, this is due to the lack of extensive, systematic empirical data on 
platelet deposition for a wide range of experimental conditions.

To cover this gap, we analyze the ability of different computational approaches to predict platelet 
deposition values for a large variety of empirical conditions. Note that as a first step, we focus on total 
platelet deposition counts and do not take into account the spatial dimension of thrombus formation13. 
Specifically, we consider the following approaches: a) a mechanistic modeling approach, b) a machine 
learning approach; and c) a phenomenological approach. We find that a phenomenological approach 
built upon empirical facts of the platelet deposition process has the largest predictive power thus offering 
novel insights into what are the effective roles of different blood factors in platelet deposition.

Approach and rationale.  Figure 1 illustrates the approach we followed in our study. Specifically, we 
first collected the platelet deposition data. Then, in order to asses the predictive power of the different 
computational approaches, we performed a cross-validation analysis. In this type of analysis, we divide 
the collected data into a training dataset and a test dataset. We use the training dataset to train our 
model or algorithm (that is to obtain model parameters) so that we obtain a good agreement between 
model/algorithm outputs and the known empirical platelet deposition value. Then, for each experimental 
condition in the test dataset, we use the trained model/algorithm to make a prediction of the platelet 
deposition value. We compare the predicted value with the real value obtained from the experiments to 
assess the error of the prediction of each approach.

Experimental data collection.  In our analysis, we consider platelet deposition data of pig blood 
obtained using a validated ex vivo perfusion chamber (Badimon chamber5,21), (see Methods). The 
Badimon chamber provides an excellent proxy for the patho-physiological environment that affects 
platelet deposition because: i) it is a bio-reactor that retains the cylindrical shape of vascular conduits in 
which one can simulate a broad range of flow conditions21,22; ii) it is flexible enough to test the throm-
bogenicity associated with different vascular surfaces or atherosclerotic lesions23; and, iii) it allows to 
analyze different blood conditions and blood treatments24,25. Specifically, we obtain platelet deposition 
data for four different pigs under a number of different experimental conditions including variation in 
shear rate, perfusion time, vascular tissue, hematocrit and platelet concentration levels (see Table 1 for a 
summary of the collected data).

Computational approaches.  We consider three complementary computationally fast approaches to 
model platelet deposition (see Fig.  1 for a summary of the main advantages and limitations of each 
approach):
	 (a) A novel mechanistic model based on the mass-transfer boundary layer theory (MBL)26. This is 

an approach that has been extensively used to investigate hemodynamics and platelet deposition in 
particular8,10,27–31. This type of models assume that the platelet deposition rate is proportional to a 
reaction kinetics constant and to the platelet concentration at the wall8,10. We consider a generalization 
of a simple model of platelet deposition that includes implicitly the effect of the convective force using 
boundary-layer theory and as a novelty differentiates between the first monolayer of platelet deposition 
[platelets in contact with the substrate (e.g. endothelial layer)] and the following multi-layer platelet 
aggregates [platelet-platelet interaction and thrombus growth] (see Methods and Supplementary Mate-
rial). As a result, the number of deposited platelets depends on the platelet and hematocrit levels in 
blood, the vascular lesion dimensions and two kinetic reaction constants that need to be determined: 
k1 for the formation of the first monolayer and k2 for the formation of subsequent layers (see Methods). 
Note that within our approach deposited platelets cannot detach.

The MBL approach has the advantage that it provides a mechanistic description of the platelet depo-
sition process in which parameters have a clear physical meaning. However, due to MBL assumptions its 
application is limited to experiments with no stenosis (since the flat plate boundary layer assumptions 
would be violated) and for short perfusion times (see Methods).
	 (b) A machine-learning approach using the Random Forest algorithm (RF)32. Methods such as the 

RF32 are especially suited to predict the outcome (for instance, number of deposited platelets) of an 
event given the observation of certain features (such as the hematocrit level, shear rate and platelet 
concentration), without a priori knowledge of the mechanisms governing the specific phenomenon. 
Indeed, the RF has been successfully applied in a variety of biological contexts such as protein inter-
action prediction33, gene classification34 and feature selection in biological models35.



www.nature.com/scientificreports/

3Scientific Reports | 5:13606 | DOI: 10.1038/srep13606

Importantly the RF can process both qualitative and quantitative variables, which make it suitable for 
our analysis in which we have both types of variables (e.g. vascular tissue and blood type are qualitative, 
while the remaining variables are quantitative—see Table 1). However, the predictive power of the RF is 
severely affected by the range of the training dataset, and will produce very bad predictions for any new 
input data that falls out of that range.
	 (c) A phenomenological model (PM) constructed from empirical evidences collected in platelet dep-

osition experiments. We consider a model that takes into account the a priori most relevant features, 
based on the following observations from the empirical data and from the literature, and further 
refined with the analysis of variable importance using the RF (see Supporting Figure S1-3):

Figure 1.  Flowchart and summary of our approach. (a) Flowchart of the analysis. Our study is divided 
in three steps: i) experimental setup and data collection; ii) training of models/algorithms; iii) prediction. 
Experimental setup and data collection: In the experiments, pig blood circulates from the animal to a 
perfusion chamber (Badimon Chamber) containing one of the three different vascular tissues considered 
triggering thrombi (tunica media, pig tendon, subendothelium). We collected platelet deposition counts 
for different experimental conditions such as perfusion time or shear rate (see Table 1 and Methods). 
We performed experiments with four different animals. Training: We consider all the collected input 
(experimental conditions) and corresponding platelet deposition data for three pigs. With this information 
we train the models/algorithms to get a good agreement between model/algorithm outputs and known 
platelet deposition values. Prediction: We now consider the data collected for the remaining pig. We use the 
experimental conditions in that dataset as inputs to the trained model/algorithm to obtain predictions of 
platelet deposition values for each set of conditions. We test the prediction power of each model/algorithm 
by comparing predicted platelet deposition values to measured platelet deposition values. We carry out steps 
ii) and iii) for the four different combinations of training (3 pigs) and test (1 pig) datasets. (b) Advantages 
and limitations of each of the computational approaches for platelet deposition prediction that we consider 
in our study: a mass-transfer boundary layer model, the Random Forest algorithm and a phenomenological 
model (see text).
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-	 Platelet deposition counts increase, in general, with perfusion time and show no apparent signs of 
saturation in the measured times (see Supporting Figure S1-4);

-	 Platelets cannot deposit on a surface if there are no platelets circulating in blood;
-	 Tissue type affects the rate of platelet deposition2,31,36;
-	 The shear rate affects the rate at which platelets deposit on a surface8,21,37.

Taking into account these simple facts, we propose the following phenomenological model for the 
logarithm of the total platelet deposition P under certain experimental conditions:

β β β γ β= + + + ( ) ( )γP C t Tlog log log log 1C t10 10 10 10

where P is the platelet accumulation, C is the platelet concentration in blood, t is the perfusion time, γ is 
the shear rate, {βC, βt, βγ} are constants, and β(T) is a constant that depends on the vascular tissue type 
(therefore it takes 3 different values).

Our cross validation analysis reveals that the PM has a larger predictive power than MBL and RF 
approaches: average median errors of 21% (MBL), 20.7% (RF) and 14.2% (PM).

Results
Model validation.  We first assess the validity of the three approaches we consider by fitting the mod-
els to all available data points. Figure 2 shows that the three approaches we propose—(a) MBL, (b) RF, 
(c) PM—are, in principle, suited to obtain accurate platelet deposition values under different empirical 
conditions. The fitting parameters for the MBL model are the kinetic constants of the platelet adhesion 
process on the substrate (k1) and on a layer of a previously deposited platelets (k2). The PM has four 
fitting parameters: βC, βt, βγ and β(T), associated, respectively, to the platelet concentration in blood, the 
perfusion time, the shear rate and the substrate. The top rows in Tables 2 and 3 show the model param-
eters estimated for MBL and PM approaches, respectively.

In the MBL approach, we find that platelet deposition counts on tunica media corresponding to a 
severely damaged vessel wall in which deeper vascular layers are exposed (i.e., vascular smooth muscle 
cell), does not depend on the values of k1 and k2. This suggests that for the experimental conditions 
under consideration, the deposition on this substrate was limited by the advective and diffusive trans-
port of platelets towards the wall. For the other two substrates (pig tendon and subendothelium), we 
find that k1 and k2 are roughly independent of the tissue and that the values of k2 are about one order 
of magnitude larger than k1. This is consistent with the fact that in the PM (Table 3) we obtain the same 
value for the tissue parameters corresponding to subendothelium and pig tendon and a different value 
for tunica media.

This observation agrees with the expectation that platelet deposition occurs in a similar manner on 
both substrates because of their similar constituents. Pig tendons are a rich source of collagen fibers 
which are precisely one of the main constituents of the basal membrane, the layer that is exposed (but 
not damaged) in a subendothelial exposure. On the other hand, tunica media encompasses endothelial 
denudation with damage to both intima and the vascular media exposing to the blood flow not only col-
lagen proteins but vascular smooth muscle cells and their constitutive proteins. Such proteins are highly 
thrombogenic5 and therefore affect differently the platelet deposition process.

Predictive power assessment.  In order to assess the predictive power of each one of the approaches, 
we performed four cross-validation experiments (Fig. 1). In each one of these experiments, we consider 
three pigs as the ‘training’ data set, and the remaining pig as our ‘test’ data set. Therefore, we use data 

Variable Values (Mean, range)

Shear rate (s−1) 212, 1390 and 1690

Perfusion time (min) 3, 5, 10, 20 and 30

Hematocrit (%) Mean: 26.46 (PCV),  
[22.0, 31.30]

Platelet concentration 
(platelets/μl) ×  10−3 Mean: 341.096, [182.0, 449.0]

Blood Native blood and heparinized 
blood

Vascular tissue
PT—pig tendon; TM—tunica 

media;  
SE—subendothelium

Platelet deposition (platelets/
cm2 ×  10−6) Mean: 130.68 [0.63, 2013.5]

Table 1.   Experimental data.
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from three pigs to estimate the kinetic constants in the MBL approach (see Table 1), to train the RF and 
to estimate the parameters in the PM (see Table  2). We then evaluate the error of each of these three 
approaches in predicting platelet deposition values for the remaining pig. Figure 3 shows, as an example, 
the cross-validation plot for pig CP89.

Figure 2.  Platelet deposition predicted by (a) the mass-boundary layer model (MBL) (b) Random Forest 
(RF) and (c) the phenomenological model (PM). We show the predictions as log10(number of platelets/
cm2 ×  10−6) versus the corresponding experimental values. Open symbols correspond to a perfusion time 
of 3 minutes, light color symbols to 5 minutes and dark color symbols to 10 minutes. Symbols with a cross 
represent data of native blood, symbols with dots and without dots correspond to different concentration of 
heparin (35 +  35U/K/H and 120 +  100U/K/H, respectively).
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Our analysis shows that the three approaches we propose produce reasonable predictions of the 
amount of deposited platelets (Fig. 4). Note that we can build further confidence in the MBL and PM 
because model parameters show little variation (that is, are always in the same orders of magnitude) 
across the set of cross-validations. We note that in the PM all parameters in Eq (1) are significantly 
different from zero. In addition, in the case of pig tendon and subendothelium, the tissue parameters 
(β(T) in Eq (1)) are very similar, confirming that there is little difference in platelet deposition on these 
two substrates as expected.

In order to quantify the predictive power of each one of the approaches, we compute the relative error 
for each one of the cross-validations performed with the three approaches (Fig. 5 and Supporting Figure 
S1-5). We note that the median error is typically low, and that the PM is the model that performs best. 
On average the PM shows relative errors typically about 14.2%, while MBL and RF approaches have 
median errors of 21% and 20.7%, respectively. This is also the case if we only consider data points for 
which MBL can produce predictions (that is, experiments with no stenosis), for which the PM has an 
average median error of 12.9%, while MBL and RF approaches on average have median errors of 22% 
and 17.2%, respectively.

We also note that in one of the cases (when predicting platelet deposition for pig CP92) we find that 
the RF and PM approaches have a much lower predictive power. An inspection of the data reveals that this 
dataset has a narrow range of platelet deposition values—CP92 platelet deposition: (platelets/cm2 ×  10−6) 
[2.4, 135.3]—, while the rest of data has a wider range—[0.62, 2013.74] (platelets/cm2 ×  10−6)—and that 
values are lower for CP92 ([182.0, 287.07] (platelets/μl ×  10−3) than for the other three pigs (platelet 

Test k1 (PT) k2 (PT) k1 (SE) k2 (SE)

(1 pig) (m/s) × 107 (m/s) × 105 (m/s) × 107 (m/s) × 105

— 9.5 (0.3) 5.4 (0.4) 8.7 (0.3) 20.0 (0.4)

CP89 10.0 (0.3) 18.0 (0.4) 12.0 (0.3) 13.0 (0.4)

CP90 6.6 (0.3) 5.9 (0.4) 13.0 (0.3) 1.0 (0.4)

CP92 10.0 (0.3) 16.0 (0.4) 12.0 (0.3) 7.5 (0.4)

CP98 6.6 (0.3) 7.2 (0.4) 7.1 (0.3) 9.8 (0.4)

Table 2.   MBL model parameters. The top row shows the values for k1 and k2 obtained considering all the 
available data for which the model can produce a prediction (no stenosis). The remaining rows show the 
values obtained for the cross-validation analysis. PT—pig tendon; SE—subendothelium.

Test βC βt βγ β(T)

— 2.2(0.3) 1.4(0.1) 0.38(0.07) − 6.4(0.8) (PT)

− 6.7(0.8) (SE)

− 5.3(0.8) (TM)

CP89 2.2(0.3) 1.3(0.1) 0.42(0.08) − 6.4(0.8) (PT)

− 6.3(0.8) (SE)

− 5.8(0.8) (TM)

CP90 2.1(0.3) 1.3(0.1) 0.30(0.09) − 5.7(0.9) (PT)

− 5.8(0.9) (SE)

− 5.2(0.9) (TM)

CP92 2.6(0.5) 1.7(0.1) 0.40(0.08) − 8.0(1.0) (PT)

− 8.0(1.0) (SE)

− 7.0(1.0) (TM)

CP98 2.0(0.4) 1.3(0.1) 0.40(0.09) − 6.0(1.0) (PT)

− 6.0(1.0) (SE)

− 5.0(1.0) (TM)

Table 3.   PM parameters. The top row shows the values [value (error)] for βC (platelet concentration), βt 
(perfusion time), βγ (shear rate) and β(T) (tissue) obtained considering all the available data. The remaining 
rows show the values obtained for the cross-validation analysis considering data for the specified pig as the 
test set and data for the remaining pigs as the training set. PT—pig tendon; SE—subendothelium, TM—
tunica media.



www.nature.com/scientificreports/

7Scientific Reports | 5:13606 | DOI: 10.1038/srep13606

concentration [289.07, 498.89] (platelets/μl ×  10−3). Therefore, the loss of predictive power is probably 
due to the fact that the training data set has ‘less’ information in the region where CP92 points lie since 
the training set covers a broader range. This issue highlights the importance of the training set in order 
to obtain accurate predictions.

Figure 3.  Cross-validation plot for pig CP89 showing platelet deposition predicted by (a) the mass-
boundary layer model (MBL, red squares), (b) Random forest (RF, blue triangles) and (c) the 
phenomenological model (PM, green circles). We show model predictions as log10(number of platelets/
cm2 ×  10−6) versus the corresponding experimental values for which MBL can produce a prediction (no 
stenosis). Open symbols correspond to the training set and filled symbols correspond to the test set. 
Parameters for PM: β(T) =  − 6.3 (PT), − 6.3 (SE), − 5.8 (TM), βC =  2.2, βt =  1.33, βγ =  0.402.
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Figure 4.  Median relative error in the test sets. For each one of the cross-validation analysis we show the 
median relative error: difference between the predicted and the measured value, relative to the measured 
value. Error bars correspond to median absolute deviation divided by the square root of observations. 
For each one of the approaches: MBL—Mass Boundary Layer Model, RF—Random Forest and PM—
phenomenological model.

Figure 5.  (a) Prediction and true value of platelet deposition of test sets. We use the same data points in 
each test set to directly compare the three modelling methods. (b) Median error of previous cross-validation, 
relative error: difference between the predicted and the measured value, relative to the measured value. Error 
bars correspond to median absolute deviation (MAD) divided by the square root of observations. MBL: 
Mass Boundary Layer (squares) Model, RF =  Random Forest (Triangles), PM =  Phenomenological Model 
(circles).
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Discussion
Our study showcases the validity of computational approaches to predict platelet deposition in vascular 
tissues in a number of different conditions. First, we empirically assessed platelet deposition exposing 
animal blood to a thrombus triggering substrate during different time periods and at different shear 
rates. Then, we tested the predictive power of three complementary approaches: i) a principle based 
approach using a mass-transfer model; ii) a machine learning approach that has no information about 
the physico-chemistry behind the biological process (Random Forest); iii) a phenomenological model 
constructed from empirical evidence.

Our study shows that the three approaches have a consistent predictive power, the phenomenological 
model having an overall better performance. Furthermore, our analysis highlights the main advantages 
and disadvantages of the different approaches (see Fig. 1).

Our analysis also shows that RF and PM approaches would significantly benefit from the availability 
of platelet deposition data for a larger variety of empirical conditions (for instance, different shear rates 
and perfusion times). However, this is not necessarily the case for the MBL model. The assumptions 
made in such model impose certain limitations on the range of applicability of the model. In particular, 
our MBL approach is not applicable to cases with stenosis or for long times of perfusion when platelet 
detachment may occur (see for example Supporting Figure S1-4c, where a decrease of deposited platelets 
is observed for perfusion times between 10 and 30 minutes). The extension of the range of applicability 
of the MBL model to these cases would require to take into account and parametrize a) the variation of 
the wall shear rate along the substrate with stenosis and b) the mechanisms responsible for the platelet 
detachment, thus entailing an increase in the number of fitting parameters.

The availability of a larger variety of empirical conditions would help improve the prediction power 
of the PM in two aspects. One the one hand, it would yield a more robust set of model parameter values 
that would give good predictions for a larger range of empirical conditions. On the other hand, new 
experimental data could help uncover new empirical facts that could be used to refine our model.

Finally, our study shows that the parameter based approaches we propose are biologically sound. 
Remarkably, our mass-transfer model is a novel model that built upon common approaches in literature 
that explicitly differentiates between the formation of the first monolayer and that of the subsequent 
layers. The fact that the kinetic constants associated to each of these mechanisms are different by an 
order of magnitude indicates that this is an important aspect of the platelet deposition process. In the 
PM, the fact that all the model parameters are different from zero all the variables we selected have a 
distinct impact in the platelet deposition process. Additionally, for both approaches we obtain parameter 
values that are consistent with our expectation of the differences of deposition on different substrates. In 
particular, in the PM approach tissue dependency is well captured by a single parameter that is similar 
for pig tendon and subendothelial tissues and different for the tunica media. In contrast, the parameters 
associated to shear rate, platelet concentration in blood, and perfusion time remain the same throughout 
the analysis. In fact, according to Table 3 the largest contribution is that of platelet concentration in blood 
and perfusion time, which is also consistent with the assumptions in the MBL model.

All in all, our study opens the door toward further studies that aim to integrate macroscopic descrip-
tion of the models we propose by coupling it to more refined models of the microscopic processes behind 
platelet deposition.

Methods
Data description and prediction experiments.  Experimental animal model.  Experiments were 
performed in Large White x Landrace commercial pigs (n =  4, m ≈  36 kg), individually caged in a light-, 
temperature-, and humidity-regulated environment with controlled feeding and free access to water. The 
investigation conforms to the Guide for the Care and Use of Laboratory Animals published by the US 
National Institute of Health (NIH Publication No. 85-23, revised 1996).

Radioactive labeling of platelets.  We performed radioactive labeling of platelets to monitor their deposi-
tion (monolayer and multilayer). To that purpose, after overnight fasting, 43 ml of pig blood was drawn 
in 7 ml of anticoagulant citrate dextrose solution by femoral venipuncture. Platelets were isolated and 
labeled with 111In (Amersham Biosciences, UK) as described in25 suspended in a final volume of 4 ml of 
autologous plasma, and reinjected into the pig (ear vein) within 2 h. Labeling efficiency was around 90% 
and the injected activity was around 250 microCi. Post-mortem 111In biodistribution indicated a correct 
platelet distribution with maximal accumulation in blood.

Extracorporeal perfusion system in the Badimon chamber.  The study protocol was approved by the 
institutional ethics committee (CSIC-ICCC) and all animal procedures were performed conform the 
guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used 
for scientific purposes or the NIH guidelines. In addition, we have followed the ARRIVE guidelines38. 
We assessed platelet behavior by exposing the animal blood to a thrombus triggering substrate during 
different time periods and at different shear rates in the previously validated and standardized Badimon 
perfusion chamber21. To that end, after overnight fasting, animals were tranquilized (8 mg kg−1 Stressnil, 
Esteve), anesthetized (10 mg kg−1, B. Braum, Spain), and a carotid artery-jugular vein shunt was estab-
lished to place the Badimon perfusion chamber as previously described25. All of the animals received 
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low-dose anticoagulation with heparin (50 IU kg−1) as a continuous infusion to avoid clotting inside the 
tubing system. This heparin regime does not affect platelet deposition21.

Blood was perfused through the chamber for different time periods (3, 5, 10, 20 and 30 minutes) at 
shear rates of 212 s−1, 1690 s−1 and at an experimental stenosis of 80%, that corresponds to a shear value 
of 1390 s−1, in order to mimic the rheological conditions within blood vessels (see the following section 
for details on the calculation of these values). The thrombogenic substrates (platelet-triggering surfaces) 
included homologous porcine vessel walls with 2 types of damage [mild (denuded vessel wall or sub-
endothelium SE) and severe (disrupted vessel wall or tunica media TM)] and pig tendon (PT). Several 
perfusions with varying time of perfusion, hemodynamic conditions and triggering substrate were per-
formed in each animal. After the perfusion, vessels were fixed in 4% paraformaldehyde to count labelled 
platelets using a gamma counter (Wizard, Wallac, USA). Values were normalized by blood 111In activity 
(counts), platelet counts in blood, and area exposed surface25. At the end of the experiment, animal’s 
heart was arrested with a 10 ml potassium chloride 2M intravenous injection.

Hematological and hemodynamic parameters.  We determined hematocrit and platelet count throughout 
the experimental period with as System 9000 Serono cell analyzer.

Overview of the data.  Table  1 provides an overview of the type and range of data collected from the 
experiments.

For the perfusions performed with 80% of stenosis, we computed the shear rate solving numerically 
the Navier-Stokes equations in the three dimensional domain that emulate the perfusion chamber with 
and without the stenosis (see S3 for details).

An analysis of the empirically measured platelet deposition counts reveals that the distribution of the 
logarithm of the number of deposited platelets has no gaps and is smoother than the distribution of the 
number of deposited platelets (see Figure. S1-1). For this reason, we focus on predicting the log10 of the 
number of deposited platelets.

Computational approaches to platelet deposition.  Mass-transfer boundary-layer model (MBL).  
Convection-diffusion-reaction models assume that the platelet deposition rate is proportional to a reac-
tion kinetics constant and to the platelet concentration at the wall8,10,27–31,39–43. In here, we consider a 
generalization of a simple model of platelet deposition that includes implicitly the effect of the convective 
force using boundary-layer theory and differentiates between the first monolayer of platelet deposition 
[platelet in contact with the substrate (e.g. endothelial layer)] and the following multi-layer platelet aggre-
gates (platelet-platelet interaction and thrombus growth).

Specifically, in our model we assume two different kinetic reaction constants: k1 for the formation of 
the first monolayer and k2 for the formation of subsequent layers. Therefore, we consider that as the first 
layer is being covered, with a maximum number of platelets =

π∞P A
d

4

p
2  where A = δW is the area of the 

substrate and dp =  2 × 10−6 m is the diameter of an adhered platelet10, the second layer starts to form. We 
model the two adhesion processes with first order kinetics.

In our model, for each one of the layers i we consider, the platelet deposition rate ″Ni  given certain 
wall flux of platelets depends on the available deposition area WLi,

= ″ = , ( )
dP
dt

N W L i 1 2 2
i

i i

with ( )δ= −
∞

L 1 P
P1

1  and δ=
∞

L P
P2

1

We assume that the diffusion, advection and reaction processes occur within a two-dimensional 
mass transfer boundary layer much thinner than the diameter of the perfusion chamber; and that there 
is a defect of concentration of platelets in comparison with the bulk concentration in the blood (see 
Supporting Material S2 for a full derivation and for a discussion about the physical interpretation of the 
equations), the platelet flux on a substrate of length L can be written as26 (see Supporting Material S2),

( )
″ =

+ .

= ,

( )γ

/
N

C
i

1 238
1 2

3

i

k
L
D

0

1
1 3

i

i
2

where C0 is the bulk concentration of platelets in the blood flow, γ is the shear rate, which is assumed 
to be constant within the mass transfer boundary layer thickness and D is the diffusion coefficient that 
depends on the hematocrit concentration44 (see Supporting Material S2).

To numerically determine the kinetic constants using the MBL model, we assume that k1 depends 
only on the type of substrate used in the experiments. For each set of experiments with a given substrate, 
we then compute the time evolution of P1 and P2 (see Eqs. S2-10 and S2-11). We then perform the cal-
culations for several values of k1 and k2 in the ranges 10−3 ≤  k1 ≤  10−8 m/s and 10−3 ≤  k2 ≤  10−8 m/s. For 
each pair of values (k1, k2), we then compute the absolute difference between the predicted value of the 
total number of platelets deposited and the corresponding experimental value at a given time. For each 
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different substrate, we select the pair of values (k1, k2) that minimizes the absolute difference between 
the measured and predicted values.

Random Forest (RF).  We use Random Forest to predict the log10 of the platelet deposition count 
using four quantitative features and two qualitative features (see Table 1). In our analysis, we used the 
Random Forest Package version 4.6–745 within R version 3.0.246. We set the algorithm to the following 
parameters (mtry =   6 , ntree =  1000). In order to control for the slight variation of each forest due to 
the bagging process, we performed 100 times each RF. For the estimation of the feature importance, we 
leaved one feature out of the Random Forest and computed the error rate. Additionally, we applied a 
linear correction to initial RF predictions to improve the error rate (see Supporting Figure S1-2).

Phenomenological model for platelet deposition (PM).  We estimate the parameters by perform-
ing a least-squares fit of the data using the R software46.
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