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Abstract

The formal chart of an organization is intended to prescribe how employees interact. However, ties between
individuals arise for personal, political, and cultural reasons. The characterization of the structure of such
informal networks behind the formal chart is a key element for successful management. We surmise that
the exchange of e-mails between individuals in organizations reveals how people interact and therefore
provides a map of the real network structure behind the formal chart. We propose a methodology that allows
extraction of relevant information about the community structure of an organization from the network of
e-mail interactions between its employees.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The network of interactions within an organization is considerably more complex than implied
in the formal chart. Due to a variety of reasons such as resolving problems of an unexpected nature,
personal and cultural similarities, and political motives, new connections are being made between
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individuals all the time. Understanding such informal networks and how they operate is neces-
sary for successful management (Krackhardt and Hanson, 1993; Mayo, 1949; Morgan, 1997).
Traditionally, informal network study is performed in two steps (Krackhardt and Hanson, 1993).
First, employee questionnaires are used to survey the network. However, employees’ answers
often contain subjective elements such as “political” motives and the worry about offending col-
leagues. This effect can be minimized by the second step: cross-checking of the answers, which
is not free of subjectivity either. A more significant limitation of the questionnaire-based analysis
is that time and effort costs make it prohibitively expensive to map the entire network, even for
medium sized organizations.

Rapid development of electronic communications provides a powerful alternative for study-
ing informal networks. The exchange of e-mails between individuals in organizations is a good
indicator of who is linked to who and it should contain information not found in the formal chart
(Economist, 2001; Ebel et al., 2002; Adamic and Adar, 2003; Guimera et al., 2003). This is inter-
esting not only from a managerial point of view, but also from fundamental and theoretical points
of view (Radner, 1993; Garicano, 2000; Arenas et al., 2001; Guimera et al., 2002).

However, extracting information from communication networks is not straightforward. For
instance, analyzing an e-mail network does not make it possible to discriminate between different
sorts of informal networks. Krackhardt and Hanson stressed the differences between informal
networks (advice network, trust network, etc.) and the importance of knowing them separately. In
an e-mail network all the informal networks and even the formal chart contribute, interacting in
a complex way. Nevertheless, the information obtained from communication network studies is
still valuable. Another problem is that extraction of information from large and complex networks
is not straightforward. Specific statistical techniques, developed recently in the field of statistical
mechanics of complex networks need to be used (Watts and Strogatz, 1998; Barabasi and Albert,
1999; Amaral et al., 2000; Albert and Barabasi, 2002; Dorogovtsev and Mendes, 2002; Girvan
and Newman, 2002; Newman, 2002).

In this paper we describe a novel procedure to characterize the structure of networks, based
on a recently proposed algorithm to identify communities in graphs (Girvan and Newman, 2002;
Guimera et al., 2003; Newman, 2004). Our procedure allows the quantitative study of the hierar-
chical structure of nested communities in networks. Moreover, we apply the procedure to a real
network. From more than one million e-mails, we build and analyze the complex e-mail network
of an organization with about 1700 employees, the Universitat Rovira i Virgili at Tarragona,
Catalonia, and determine its community structure.

In the next section we describe how the network is built and study some of its statistical
properties such as the degree distribution (Barabési and Albert, 1999; Amaral et al., 2000) the
clustering coefficient (Watts and Strogatz, 1998) and the assortativity (Newman, 2002). Next, we
describe how one can obtain insight into the community structure of the network and present this
information in a useful way from a managerial point of view. Finally, we study the properties of
the community structure. Surprisingly, we find that it shows emergent self-similar properties as
occurs in other natural systems such as, for example, river networks (Guimera et al., 2003; Gleiser
and Danon, 2003).

2. Characterization of the e-mail network
Every time an e-mail is sent, some information is routinely registered in a server, includ-

ing the addresses of the sender and the receiver. Using this information an e-mail net-
work can be built with each address being represented by a node and each e-mail by a
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Fig. 1. The e-mail network of URV. Each individual is represented by a colored node, with two individuals (A and B)
being connected if A sends an e-mail to B and B replies, or vice versa. Each color corresponds to an individual’s affiliation
to a specific center within the university. E-mails sent to or received from outside are not considered and isolated nodes
are not shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of the article.)

link between nodes. Since e-mail is directed, the links and therefore the entire network are
directed.

At Universitat Rovira i Virgili (URV), there are three different servers that manage the e-mail
accounts of all the staff (professors, technicians, managers, administrators, graduate students,
etc.). The total number of users is approximately 1700." To study this network, only e-mails sent
within the university during the first 3 months of 2002 were considered. Out of a total of 1,135,818
e-mails registered by the servers, we restrict the analysis to e-mails with both sender and receiver
belonging to the university. The resulting e-mail network is shown in Fig. 1. For the purpose of
the present analysis, we disregard the fact that some links are much more active than others in the
e-mail network. Such a consideration has been taken into account, for example, in Caldarelli et
al. (2004). The analysis of other complex weighted networks has also revealed some interesting
results (Barrat et al., 2004).

2.1. Degree distribution

First, we consider the cumulative degree distribution, P(k), that gives the probability of a
certain node having more than k links.2 Since e-mails can be sent or received, these links are

! A random code is assigned to each address, thus preserving the anonymity of the users.
2 The cumulative distribution P(k) is simply related to the probability density function p(x) by P(k) = f_oc dx p(x).

In particular, if p(x) is a power law p(x) ~x~%, then P(k) ~ k=1, and if p(x) is an exponential p(x) ~ exp(—x/k*), then
P(k) ~ exp(—kIk").



656 R. Guimera et al. / J. of Economic Behavior & Org. 61 (2006) 653-667

10 w——— L[] T T 10O T T

§ P ©oo " = In-degree =

. [ %*bo%' o Out-degree e
£ 4ok % 4 Z10'F E
o D00 B
@ ) o
o Ll 00 =)
e (o) [=] 2 -
a2 . % o Al s10
[ E [«]
= F >
= [ - "E 3
= i " sS10°F E
€ 107 Hi| e
2 E . S
[&] F L . I 1 L [t L 1 1

10° 10 10° 10° 109 20 40 60

(a) Degree, k (b) Degree, k

Fig. 2. Degree distribution of the e-mail network of URV. (a) In- and out-degree distributions when all internal e-mails are
considered. The out-degree distribution is highly skewed due to the presence of e-mail lists. (b) Total distribution when
e-mails sent to more than 50 users are discarded and only bidirectional mails are considered. In this case, the distribution
decays exponentially.

directed: incoming links account for received e-mails and outgoing links for sent e-mails. In
principle, the in- and out-degree distributions are measured considering all the e-mails sent
within the university: nodes are addresses and a directed link indicates that at least one e-
mail has been sent from one address to another. The resulting degree distribution is shown in
Fig. 2a. The asymmetry between the distribution of incoming (received) and outgoing (sent)
e-mails is apparent from the plot. While the maximum in-degree (that is, the maximum num-
ber of users that are sending e-mails to the same address) is about 100, the maximum out-
degree (that is, the maximum number of addresses that a given user is sending e-mails to)
is more than 1000. Actually, the in-degree distribution decays very fast, while the out-degree
distribution is highly skewed, since a few nodes send e-mails to more than 1000 different
addresses.

The origin of the highly skewed out-degree distribution in Fig. 2a is related to the existence of
e-mail lists, that is to the fact that some users send the same e-mail to a list of users (these lists can
eventually include almost everyone in the university). No matter what the origin of the e-mails
is, the skewness of the degree distribution will be crucial, for instance, when dealing with virus
propagation (Pastor-Satorras and Vespignani, 2001).

However, from our perspective bulk e-mails provide little or no information about how indi-
viduals or teams collaborate. To minimize the effect of spam e-mail (i) we eliminate e-mails
that are sent to more than 50 different recipients, and (ii) we disregard links that are unidirec-
tional, that is we consider only e-mails that represent a real communication link, where e-mails
flow in both directions. With these two restrictions, the network becomes undirected (since all
links are now bidirectional) and the degree distribution is exponential P(k) ocexp(k/k*), with
k™~ 10 (Fig. 2b). This result is consistent with the proposal of Amaral et al. that the trunca-
tion of the scale-free behavior in real world networks is due to the existence of limitations or
costs in the establishment of connections (Amaral et al., 2000). It seems plausible that there exist
limitations to maintain an arbitrarily large number of active social acquaintances. However, it is
relatively easy to keep many electronic acquaintances open (although most of them are proba-
bly inactive from a social point of view), giving rise to heavily skewed degree distributions as
happens in technology based social networks such as rough e-mail networks (Ebel et al., 2002),
the Instant Messaging Network (Smith, 2002), or the PGP encryption network (Guardiola et al.,
2002).
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2.2. Assortativity

It has been stated that computer networks can be regarded in many cases as true social networks
(Wellman, 2001). To test whether the e-mail network indeed shows properties of a social network,
we use the measure recently proposed by Newman (2002). He reports that in social networks (for
example co-authorship networks) highly connected nodes usually tend to be connected to other
highly connected nodes, or in other words, there are positive correlations in the degree—degree
correlation function. Conversely, technological and biological networks (for example the Inter-
net or food webs) seem to show negative correlations. To classify networks according to this
scheme, the Pearson correlation coefficient, r, is used: networks with r> 0, like social networks,
are called assortative while networks with <0, like technological and biological networks, are
called disassortative. The e-mail network of URV yields a value »=0.079, suggesting that it is a
weak assortative social network, even though this value is small to be considered conclusive.

2.3. Clustering coefficient

Next, we consider the clustering coefficient, C, of the network (Watts and Strogatz, 1998) which
quantifies the transitivity of the network: if A is connected to B and C, the clustering coefficient
gives the probability that B and C are also connected to one another. In the following analysis,
we focus on the largest connected cluster of the URV e-mail network that contains 1133 nodes.
The remaining nodes are isolated and will not be considered from now on. We find that the value
of the clustering coefficient C=0.254, which is approximately 30 times larger than the expected
value for a random graph of the same size and average degree. Such a high value of C suggests a
scenario where the network is comprised of several highly connected communities (with a lot of
redundancy in the linking) that are loosely connected to other highly connected communities. In
fact it has recently been shown that there is a close relation between highly clustered regions of
a graph and the existence of communities (Eckmann and Moses, 2002). In the next sections, we
focus on the identification of such communities and on the characterization of their structure.

3. The hierarchical community structure
3.1. Interaction between formal communities within the organization

Any organization with more than a few employees is formally divided into units or centers that
carry out different parts of the production process. In the case of a university, these centers are the
colleges (for example, the School of Chemical Engineering) and the administrative and support
units (such as the office of the President of the university or the library service, respectively).

Before we move to the identification and analysis of the real communities in the organization,
we want to show that the e-mail network provides useful information about how formal centers
actually interact with one another.

First, we focus on the average distance between centers. We take each node in the network and
measure the number of steps across the e-mail network needed to reach any other node. Then we
average over all the nodes in the same center and obtain average distances between centers. To
visualize this information, we proceed as follows. First, we calculate the distance from one center
A to all other centers, dap, dac, and so on. Then we compute the average distance from A to the
other centers (da). Finally, node A (that now represents a center, not an individual) is linked to
another node B if dap < (da). In this case, the network is directed because, in general, dap < (da)
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Fig. 3. Interactions between centers from the e-mail network. (a) Inter-center relations from distances in the e-mail
network. A directed link is established from A to B when the average distance between nodes in A and B is short (see
text). Five small centers with less than 10 persons have been disregarded. (b) Probability of being connected to nodes that
belong to other centers. Each bar represents the probability of a node in center 4 or 13 to be connected with a node in
another center.

does notimply dpa =daB < (dp). Thisis presented in Fig. 3 where numbers correspond to different
centers in the university. Three central communities (10, 11 and 13) can be clearly identified and
should correspond to central offices and administrative centers of the university. These three
interact on the left with a group of four centers and on the right with another one formed by five
centers. Significantly, only one direct link connects the centers on the left to those on the right.
There is one center that is only connected to two of the central nodes and somehow isolated from
the rest of the university. No further comments can be made here due to confidentiality constrains.

The second measure of interaction between centers is the probability of nodes in a center being
connected to nodes in other centers. For each node in the network, we just regard its neighbors
and, again, we average over all the nodes that belong to the same center. Two typical cases are
shown in Fig. 3b.

Center 13 is one of the three central nodes in Fig. 3a. As can be seen from Fig. 3b, individuals that
belong to center 13 are connected with a reasonably high probability not only to other individuals
in the same center but also to individuals belonging to most of the other centers. Conversely,
individuals in center 4 are mostly connected to others from the same center and also to individuals
in center 10, that has been already identified as a central management unit. Extreme cases of these
two patterns could be considered pathological: groups with lots of outside connections and very
few internal connections are said to show anomalous communication patterns, while groups with
an extremely high fraction of internal connections but weakly connected to other groups are said
to show imploded relationships (Krackhardt and Hanson, 1993).

3.2. Identification of real communities

As well as many other types of networks, social networks have “community structure”, that
is, the combination of regions with a high density of vertex-vertex connections and other regions
that are very sparse. In an organization, such community structure should correspond, to some
extend, to the formal chart. However, ties between individuals in an organization also arise due to
personal, political and cultural reasons, giving rise to informal communities and to an informal
community structure. The understanding of informal networks underlying the formal chart and of
how they operate is a key element for successful management.
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The traditional method for identifying communities in networks is hierarchical clustering (Jain
and Dubes, 1988). The idea is the following. Quantify first how closely connected is each pair
of nodes in the network. Then create an empty network with all the nodes but no links between
them, and start adding links between the nodes that are more closely connected. This procedure
gives rise to a nested set of increasingly large components.

In this work we use a different community identification algorithm, proposed recently by
Girvan and Newman (GN). This new algorithm gives successful results even for networks in
which hierarchical clustering methods fail. The algorithms works as follows. The betweenness
of an edge is defined as the number of minimum paths connecting pairs of nodes that go through
that edge (Wasserman and Faust, 1994; Newman, 2001). The GN algorithm is based on the idea
that the edges which connect highly clustered communities have a higher edge betweenness (for
example edge BE in Fig. 4a) and therefore cutting these edges should separate communities.
Thus, the algorithm proceeds by identifying and removing the link with the highest betweenness
in the network. This process is repeated (should it be necessary) until the ‘parent’ network splits,
producing two separate ‘offspring’ networks. The offspring can be split further in the same way
until they comprise of only one individual. In order to describe the entire splitting process, we
generate a binary tree, in which bifurcations (white nodes in Fig. 4b) depict communities and
leaves (black nodes) represent individuals. All the information about the community structure
of the original network can be deduced from the topology of the binary tree constructed in this
fashion.

3.3. Graphical representation of the hierarchical community structure

Consider again the network in Fig. 4a. At the beginning of the process, no links have been
removed and the whole network is represented by node 1 in the binary tree of Fig. 4b. When
edge BE is removed, the network splits in two groups: group 2, containing nodes A to D, and
group 3, containing nodes E to I. After this first splitting, two completely separate communities

() (b)

Fig. 4. Community identification according to the GN algorithm. (a) Shows a network containing two clearly defined
communities connected by the link BE. This link will have the highest betweenness, since to get from any node in one
community, to any node in the other, this link needs to be used. Therefore, it will be the first link to be cut, splitting the
network in two. The process of cutting this link corresponds to the bifurcation at the highest level of the binary tree in (b).
Since there is no further community structure in the offspring networks, the rest of the nodes will be separated one by one,
generating a binary tree with two branches corresponding to the two communities. For the community on the right, the
most central node will be separated last. In general, branches of the binary tree correspond to communities of the original
network and the tips of these branches correspond to the leaders of the communities.
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Fig. 5. (a) Binary tree showing the result of applying the GN algorithm and our visualization technique to the e-mail
network of URV. Each branch corresponds to a real community and the tips of the branches correspond to their leaders. The
splitting procedure starts in the position indicated by an arrow at the top of the drawing and proceeds downward. The color
of the nodes represents different centers within the university (five small centers containing less than 10 individuals are
assigned the same color). Nodes of the same color (from the same center) tend to stick together meaning that individuals
within the same center tend to communicate more and that the algorithm is capable of resolving separate centers to a good
degree of accuracy. (b) Same as before but without showing the nodes so that the structure of the tree is clearly shown.
Branches are colored according to their Horton—Strahler index (see text). (c) Binary tree showing the result of applying
the GN algorithm to a random graph with the same size and degree distribution than the e-mail network. Again, colors
correspond to Horton—Strahler indices. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)
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are left, a very homogeneous one and a very centralized one. One can check that in both cases the
algorithm will separate nodes one by one giving rise to two different branches in the binary tree.
Actually, when communities with no further internal structure are found, they are disassembled
in a very uneven way giving rise to branches. In other words, the impossible task of identifying
communities from the original network is replaced by the easy task of identifying branches in
the binary tree. When centralized network structures are treated, the central node(s) will appear
at the end of the branch. This provides a method to identify the leaders of each community.

Fig. 5a depicts the binary tree that results from the application of the GN algorithm to the e-mail
network of URV. As in Fig. 1, each color corresponds to an individual’s affiliation to a specific
center within the university. Centers are in most of the cases faculties or colleges, for example the
School of Engineering, and are usually comprised of departments, for example, the Department
of Chemical Engineering or the Department of Mechanical Engineering. In turn, departments
are divided into research teams, for instance, the group of Transport Phenomena or the group of
Biotechnology in the Department of Chemical Engineering.

Instead of plotting the binary tree with the root at the top as in Fig. 4b, it is plotted optimizing
the layout so that branches, representing the real communities, are as clear as possible. Actually,
the root is located at the position indicated with the arrow in the upper left region of the tree. From
there downward, branches are separated at both sides until only yellow nodes (at the bottom)
are left. Significantly, yellow nodes, corresponding to center 10, already appear at the center of
Fig. 1 and at the center of Fig. 3a, suggesting that center 10 is an important management unit
of the university. The branches obtained by the GN procedure (Fig. 5) are essentially of one
color, indicating that we have correctly identified the centers of the university. This is especially
true if one focuses on the ends of the branches since, as discussed above, these ends correspond
to the most central nodes in the community. In regions close to the origin of the branches, the
coexistence of colors corresponds to the boundary of a community. It is important to note that the
GN algorithm is able to resolve not only at the level of centers, but is also able to differentiate
groups (sub-branches) inside the centers (departments and even research teams).

For comparison, we also show the tree generated by the GN algorithm from a random graph of
the same size and degree distribution as the e-mail network (Fig. 5c). The absence of community
structure is apparent from the plot.

4. Emergent properties of the community structure

Next, we analyze the statistical properties of the community structure of the university. We
will show that there are some self similar properties emerging in the network.

4.1. Community size distribution

The first quantity that will be considered is the community size distribution. Fig. 6a represents
a hypothetical tree generated by the community identification algorithm (for clarity, the tree is
represented upside down). Black nodes represent the actual nodes of the original graph while
white nodes are just graphical representations of groups that arise as a result of the splitting
procedure. Indeed, nodes A and B belong to a community of size 2, and together with E form a
community of size 3. Similarly, C, D and F form another community of size 3. These two groups
together form a higher lever community of size 6. Following up to higher and higher levels, the
community structure can be regarded as the set of nested groups depicted in Fig. 6b. A natural way
of characterizing the community structure is to study the community size distribution. In Fig. 6a,
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(b)

Fig. 6. Community size distribution and analogy with river networks. (a) Calculation of community sizes from the
community binary tree. (b) Representation of the hierarchical structure of nested communities. (c) Calculation of the
drainage area distribution for a river network.

for instance, there are three communities of size 2, three communities of size 3, one community
of size 6, one community of size 7, and one community of size 10. Note that a single node belongs
to different communities at different levels.

Fig. 7 displays the heavily skewed cumulative distribution of community sizes, P(s). It follows
a power law behavior P(s) oc s~ with o =0.48 between s =2 and s ~ 100. Beyond this value, the
distribution shows a sharp decay, and at s & 1000 the distribution shows a cutoff that corresponds
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Fig. 7. The distribution of community sizes, P(s), showing a power law region with the exponent —0.48, followed by a
sharp decrease at s &~ 100 and a cutoff corresponding to the size of the system at s &~ 1000. The distribution of community
sizes in a random network is shown for comparison.
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to the size of the system (the whole network containing 1133 nodes). The power law of the
community size distribution suggests that there is no characteristic community size in the network
(up to size 100). To rule out the possibility that this behavior is due to the community identification
algorithm we also considered the community size distribution for a random graph with the same
size and degree distribution as the e-mail network. In this case (dotted line in Fig. 7), P(s) shows
a completely different behavior, with no communities of sizes between 10 and 600, as indicated
by the plateau in Fig. 7. This corresponds to a situation in which all the branches (communities)
are quite small (of size less than 10) with the backbone of the network formed by the union of all
these small branches.

Some analytical approaches have been proposed in the literature to estimate the exponent of
the size distribution of binary trees (De los Rios, 2001). Although these approaches are interesting
and could be adapted to calculate the exponents in our distributions, this is out of the scope of the
present paper.

4.2. Analogy with river networks

Fig. 7 suggests a similarity between the distribution of community sizes and the distribution
of drainage areas in river networks (Rinaldo et al., 1993; Rodriguez-Iturbe and Rinaldo, 1996;
Maritan et al., 1996; Banavar et al., 1999). This similarity can be understood by considering how
this distribution is obtained from the community identification binary tree. Let us assign, as shown
in Fig. 6a, a value of 1 to all the leaves in the binary tree or, in other words, to all the nodes that
represent single nodes in the original network (black nodes of the binary tree). Then, the size of a
community i, s;, is simply the sum of the values s, and s, of the two communities (or individual
nodes), j1 and j», that are the offspring of i. Fig. 6c shows how the drainage area of a given point
in a river network is calculated. Consider that at any node of the river network there is a source of
1 unit of water (per unit time). Then, the amount of water that a given node drains is calculated
exactly as the community size for the community binary tree, but adding the unit corresponding to
the water generated at that point: s; = s, + s, + 1. This quantity represents the amount of water
that is generated upstream of a certain node. In this scenario, the community size distribution
would be equivalent to the drainage area distribution of a river where water is generated only at
the leaves of the branched structure.

The similarity between the community size distribution of the e-mail network and the area
distribution of a river network is striking (see, for instance, the data reported in Maritan et al. for
the river Fella in Italy). The exponent of the power law region is very close to the one obtained
for the community size distribution; according to Rinaldo et al. ¢jyer =0.43 4= 0.03, while for the
community size distribution we obtain o =0.48. Moreover, the behavior with first a sharp decay
and then a final cutoff is also shared. River networks are known to evolve to a state where the total
energy expenditure is minimized (Kramer and Marder, 1992; Rinaldo et al., 1993; Sinclair and
Ball, 1996). The possibility that communities within networks might also spontaneously organize
themselves into a form in which some quantity is optimized is very appealing and deserves further
investigation.

4.3. Horton—Strahler (HS) index
The similarity between the community size distribution and the drainage area distribution of

river networks prompts one question: is this similarity arising just by chance or are there other
emergent properties shared by community trees and river networks? To answer this question we
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Fig. 8. Calculation of the Horton—Strahler index. (a) Asymmetric binary tree (b) corresponding Horton—Strahler indices
of the leaves and branches. In this case there are Nj = 10 branches with index 1, N, =3 with index 2 and N3 =1 with
index 3.

consider a standard measure for categorizing binary trees: the Horton—Strahler index, originally
introduced for the study of river networks by Horton (1945), and later refined by Strahler (1952).
Consider the binary tree depicted in the left side of Fig. 8. The leaves of the tree are assigned a
Strahler index i = 1. For any other branch that ramifies into two branches with Strahler indices i
and iy, the index is calculated as follows:

ii+1 ifi; =iy,
max(iy, ip) ifi] # ip.

Therefore, the index of a branch changes when it meets a branch with higher index or when it
meets a branch with the same value that it joins to form a branch with higher index (see Fig. 8b).

The number of branches N; with index i can be determined once the HS index of each branch
is known. The bifurcation ratios B; are then defined by B; = N;/N;41 (by definition B; > 2). When
B; =~ B for all i, the structure is said to be topologically self-similar because the overall tree can
be viewed as being comprised of B sub-trees, which in turn are comprised of B smaller sub-trees
with similar structures and so forth for all scales. River networks are found to be topologically
self similar with 3 < B <5 (Halsey, 1997).

We find that the community tree as generated by the process described above is topologically
self similar with B; = B =5.76 (see Fig. 9). The same analysis for the communities in a random
graph shows that topologyical self similarity does not hold since the values B; are not constant;
they fluctuate around a smaller value 3.46.

The HS index also turns out to be an excellent measure to assess the levels of complexity
in organizations. First, let us consider the interpretation of the index in terms of communities
within an organization. The index of a branch remains constant until another segment of the same
magnitude is found. In other words, the index of a community changes when it joins a community
of the same index. Consider, for instance, the lowest levels: individuals (i = 1) join to form a group
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Fig. 9. The number of branches with HS index i, as a function of i. From the definition of B;, it is straightforward to show
that when topologyical self similarity holds, N;=N;/B"~!. A fitting of this function to the points obtained for the e-mail
community tree yields excellent agreement with B =5.76. A much worse agreement is obtained for the community tree
corresponding to the random network, with B; fluctuating around 3.46.

(with i = 2), which in turn will join other groups to form a second level group (i = 3). Therefore, the
index reflects the level of aggregation of communities. For example, in URV one could expect to
find the following levels: individuals (i = 1), research teams (i = 2), departments (i = 3), faculties
and colleges (i =4), and the whole university (i = 5). Strikingly, the maximum HS index of the
community tree is indeed 5, as shown in Fig. 9.

Fig. 5b shows the community tree of the e-mail network with different colors for different
HS indices. This helps to distinguish the individual, team and department levels within a branch.
Actually, the university level is the “backbone” of the network along which the separation of
communities occurs (from the top to the bottom of the figure). From this backbone, colleges,
departments and some research teams separate, although it is worth noting that colleges or, in
general, centers that are small and have no internal structure will be classified with a HS index
corresponding to a department or even a team. Therefore, the HS index does not represent admin-
istrative hierarchy but organizational complexity. For comparison Fig. 5¢ shows in color the HS
index for the binary tree of a random graph.

The fact that the community structure is topologically self-similar means that the organization
is similar at different levels. In other words, it means that individuals form teams in a way that
resembles very much the way in which teams join to form departments, to the way in which
departments organize to form colleges, and to the way in which the different colleges join to form
the whole university.

5. Conclusions

In this paper we have shown how to extract valuable information describing real complex net-
works behind the formal chart of an organization. We take advantage of the automatic registration
of communication processes, in particular e-mails log files, to reconstruct the real network of
interactions within the organization. This complex network is unraveled by the identification of
the whole hierarchy of communities that individuals form at all levels within the organization. We
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propose a representation procedure that allows the identification of these communities by visual
inspection and the determination of their level in the hierarchy using the Horton—Strahler index.
To demonstrate the viability of the analysis, we study the e-mail network of the University Rovira
i Virgili (Tarragona, Spain). From this analysis, we are able to identify the real organization of
the individuals of the university into working teams, departments, faculties or colleges, and the
whole university, as well as the interrelations between them.

We argue that this ‘informal’ organization of individuals into communities inside the university
could be useful for management purposes, for example, to assess formal charts or to measure the
degree of attainment over time of proposed organizational changes. The same analysis could be
performed over the logs of phone calls, internal ordinary mail, faxes, and so on.

From a theoretical point of view, the methodology identifies emerging properties in the com-
munity structure, and we find a striking analogy with river networks. Although the study of this
similarity should be performed over more and different organizations, we speculate that acommon
principle of optimization (of flow of information in our case or of flow of water in rivers) could be
the underlying driving force in the formation and evolution of informal networks in organizations.

Note: After the submission of this paper, several other studies have stressed the importance of
e-mail networks as a tool to understand the structure of social organizations (Tyler et al., 2005;
Eckmann et al., 2004; Wu et al., 2004; Caldarelli et al., 2004).
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