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Abstract

Accurate estimates of the incidence of infectious diseases are key for the control of epidem-

ics. However, healthcare systems are often unable to test the population exhaustively, espe-

cially when asymptomatic and paucisymptomatic cases are widespread; this leads to

significant and systematic under-reporting of the real incidence. Here, we propose a

machine learning approach to estimate the incidence of a pandemic in real-time, using

reported cases and the overall test rate. In particular, we use Bayesian symbolic regression

to automatically learn the closed-form mathematical models that most parsimoniously

describe incidence. We develop and validate our models using COVID-19 incidence values

for nine different countries, confirming their ability to accurately predict daily incidence.

Remarkably, despite the differences in epidemic trajectories and dynamics across coun-

tries, we find that a single model for all countries offers a more parsimonious description and

is more predictive of actual incidence compared to separate models for each country. Our

results show the potential to accurately model incidence in real-time using closed-form

mathematical models, providing a valuable tool for public health decision-makers.

Author summary

In pandemic situations, adopting timely, effective preventive measures requires accurate

and real-time estimates of the incidence of the disease. However, estimates of incidence

are typically biased and incomplete. Here, we propose a machine learning method that

allows us to discover mathematical models that accurately estimate real incidence from

readily available measures, such as the number of cases detected and the number of tests

administered on a given day. Contrary to heuristic approaches, which are forced to make

bold assumptions about the models, our approach automatically selects the most parsimo-

nious models from the data, with very mild assumptions about the structure of the biases

of incidence estimates based on incomplete testing. Our models outperform others at pre-

dicting real incidence. Additionally, we find that the same models can be applied to
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describe nine different countries with very different socioeconomic characteristics and

epidemic dynamics.

Introduction

The control of an epidemic hinges on having accurate estimates of the incidence of the infec-

tion, that is, the number of newly infected individuals in the population. A reliable method for

obtaining accurate and consistent estimates of incidence involves testing large, random sam-

ples of the population regularly [1]. However, healthcare systems often lack the capacity to per-

form such large-scale testing campaigns. This limitation was evident during the COVID-19

pandemic, where testing samples were typically small and predominantly focused on symp-

tomatic individuals [2]. Given the high number of asymptomatic and paucisymptomatic cases,

this approach results in a considerable underestimation of the actual incidence of infection.

Among other major effects on epidemic control, under-detection of cases leads to silent

spreading, and makes it difficult to estimate key epidemiological parameters such as the basic

reproduction number R0 and the time-varying reproduction number Rt [3–5]. As a conse-

quence of the latter, under-reporting compromises attempts to forecast incidence and to evalu-

ate the effect of past and future control measures, which is further aggravated by the fact that

under-reporting is not constant, but changes with time and geography, because of changes in

epidemic response and testing practices [5–8].

A potential strategy to achieve more accurate estimates of incidence that correct for under-

reporting is to use compartmental models calibrated against time series of reported cases, hos-

pitalizations, and/or fatalities [8–15]. Yet, while these models can describe the entire temporal

evolution of an epidemic and the impacts of various interventions ex post, they are unable to

provide real-time estimates of incidence. Similarly, reconstruction of real incidence from some

form of deconvolution of the time series of fatalities [6, 16] is only possible retrospectively.

A more effective strategy for real-time estimation involves the utilization of semi-empirical

and data-driven models. These models establish functional correlations between the incidence

of a disease and daily accessible metrics, such as reported cases and the number of tests con-

ducted [17–19]. Along these lines, here we introduce a data-driven machine learning approach

to estimate the daily incidence of a pandemic, using only reported cases and the test rate across

the population. Our method differs from previous models that assumed and imposed specific

functional relationships between the actual incidence, detected cases, and test rate. Instead, we

employ automated equation discovery [20, 21] and, in particular, Bayesian symbolic regression

[22–24], to automatically derive parsimonious closed-form mathematical models capturing

this relationship.

We train and validate our models using reconstructed COVID-19 incidence data from nine

different countries. In particular, we train the Bayesian symbolic regression algorithm using

these COVID-19 incidence time series from each of the nine countries over a four-month

period. We then validate our models in terms of their ability to precisely estimate unobserved

daily incidences beyond the training data, in conditions that emulate real-time prediction of

incidence during the following two months. Moreover, and in contrast with standard machine

learning approaches, ours allow us to train and compare: (i) specific models for each country;

versus (ii) a single, unified mathematical model that represents daily incidences across all

countries. Contrary to what one may expect from the heterogeneity of testing practices and

from the variability in detection rates, even within single countries [6–8], we conclude that a

unified model, tailored with country-specific parameters, offers a more parsimonious and
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predictive representation of data compared to using distinct models for each country. From a

practical perspective, our findings demonstrate that our models are not only precise in estimat-

ing real-time incidence rates but also readily applicable tools for public health policymakers.

Results

Machine learning models to estimate daily unreported cases

We aim to provide a (nearly) real-time estimation of the incidence I(t), defined as the number

of newly infected individuals in a population on day t. We write I(t) in terms of the number

C(t) of reported cases on that day, which, assuming that individuals are not tested more than

once per day, coincides with the number of positive tests on that day. Therefore, we have

IðtÞ ¼
1

r
� CðtÞ ; ð1Þ

where ρ is the reporting (or detection) rate, and the factor 1/ρ represents how many real new

cases there are on day t for each reported case on the same day. Given that C is a known quan-

tity, the challenge is to obtain an expression for ρ as a function of known daily variables. In

particular, we expect ρ to have a non-trivial dependence on the fraction T of the population

tested. Indeed, considering for a moment a uniform, constant infection period, in the absence

of testing bias towards infected individuals ρ would be proportional to T (the constant of pro-

portionality being the inverse of the infection period). For the same T and I, if testing is instead

biased, then C is higher and must be compensated by a larger ρ. The bias is expected to be espe-

cially strong for small test samples, mostly consisting of infected individuals, while gradually

disappearing for increasingly larger samples.

These qualitative behaviors can be accounted for by a simple power-law 1/ρ/ Tn, with

n� 0, as proposed by Chiu et al. [18] The closer n is to zero, the larger the bias. This model

has the desirable limiting behaviors: (i) ρ(T = 0) = 0, so that C = 0 when there is no testing; (ii)

ρ(T = 1) = 1, so that C = I when the whole population is tested and all cases are reported.

(Strictly speaking, in the limit T = 1 one would need to exclude from testing individuals that

were already reported positive on previous days; otherwise, C would coincide with the preva-

lence, rather than the incidence. Also strictly speaking, reporting is delayed with respect to

infection. If the times between infection and detection are narrowly distributed, the infection

and detection curves are just shifted in time; otherwise, there is a smoothing of the detection

curve compared to the infection curve, in addition to the shift.) Following this reasoning, Chiu

et al. [18] estimated the fraction of non-detected infections using constant, country-dependent

exponents n. Their estimates were more accurate than those obtained from data-driven epide-

miological models.

Here, we argue that bias, and hence under-reporting, cannot be entirely accounted for by

test coverage. In fact, even for the same number of administered tests, the bias may change in

response to the current state of the epidemic, making it plausible that the factor 1/ρ depends

also on the reported cases C(t). Building on these observations, we propose a more general

model 1/ρ = Tn(T,C), where the exponent n(T, C) is allowed to be a function of T and C. (Note

that the reporting exponent n is not a direct measure of the bias when, as it happens in reality,

the infection period is distributed. Indeed, in that case we no longer have a reference value for

n indicating unbiased sampling. Nonetheless, for a fixed test coverage, it is still true that the

smaller is n, the lower is the bias.) Rather than postulating a certain functional dependency of

the reporting exponent n(T, C), we propose an automated method to learn this dependency

from data.
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Indeed, we assume that, for a limited training period, we have time series T(t) and C(t), and

the ground truth incidence I(t). The daily value of the reporting exponent n for such dataset

can be estimated using Eq (1) as

nðtÞ ¼
log IðtÞ � logCðtÞ

log TðtÞ
: ð2Þ

With n(t) calculated in this way, we aim to find a closed-form mathematical model n = n(T, C)

that describes the dependency of n on T and C (and, thus, that of the reporting rate ρ). (By

closed-form we mean a model that can be expressed in terms of standard operations; for exam-

ple, n = (C/T)2 or n = exp (T + C)/T; see Methods.) To do this, we use a Bayesian symbolic

regression approach known as the Bayesian machine scientist (BMS; Methods) [22]. Given a

dataset D, the BMS samples models n(T, C) from the posterior distribution over models

PðnðT;CÞjDÞ ¼
exp ½� LðnðT;CÞÞ�

ZðDÞ
; ð3Þ

where LðnðT;CÞÞ is the description length [25] of the model and the dataset [22]. The descrip-

tion length measures the number of nats needed to encode both the dataset D and the model n
(T, C). According to Eq (3), the most plausible model is the one with minimum description

length, that is, the one that provides the most compressed description of the data. This method

is consistent (asymptotically, it selects the true generating model with probability approaching

one) and it outperforms other symbolic regression approaches [22, 24].

The BMS learns the correct reporting rate from synthetic data

We start by validating our approach on synthetic data. In particular, we use a compartmental

epidemic model to simulate four different spreading scenarios (see Methods for details and

exact parametrizations): (i) a scenario of decreasing incidence after a peak; (ii) a scenario of

increasing incidence leading to a peak; (iii) a scenario with a complete wave; and (iv) a scenario

with two consecutive waves. For each one of these scenarios, we simulate four testing and

detection models (Methods). In the first three models, testing grows indefinitely with inci-

dence; in the fourth model, testing initially grows with incidence but it eventually saturates,

thus simulating a more realistic setting with limited testing capabilities. With regards to

reporting, in the first two models we assume constant reporting exponents (n = −1 and n = −2,

respectively) as in Ref. [18], whereas in models three and four we assume that the reporting

exponent explicitly depends on C. Our experimental design thus results in 16 different valida-

tion experiments (Fig 1).

In all these experiments, we simulate 200 days; we use the first 40 of them for training and

the remaining 160 for testing. In all cases, the BMS is able to identify the correct closed-form

model for the reporting experiment n(C, T) as the most plausible model, and thus provides

optimal estimates of real incidence (Fig 1).

The reporting exponent is not constant in empirical data

Having validated our approach on synthetic data, we move on to real data on the daily number

of positives C(t) and tests T(t) during the second wave of the COVID-19 epidemic (August

2020 to January 2021, before the first massive vaccination campaigns), and from an estimate of

the real incidence I(t) during the same period. We obtain equivalent data for nine different

countries: Belgium, Canada, Catalonia, Croatia, France, Hungary, India, Italy, and the United

Kingdom (UK). We estimate the incidence I(t) by deconvolving the daily number of fatalities

(Methods) [16], which implicitly assumes that the infection fatality rate did not change
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significantly during the period considered (as opposed to what happened after vaccination

started). However, we note that, in practice, one may obtain estimates of I(t) by other methods

such as sentinel testing, serological studies, syndromic surveillance or any other; and that our

methodology does not hinge on the particular method used to estimate incidence for training.

We assume that each country i has its own exponent, but train the BMS using two different

hypotheses in this regard. First, we assume that each country i is described by an entirely dif-

ferent functional form ni(T, C). To do that, we sample models from the posterior distribution

p(ni|Di) for each country i. Second, we assume that ni(T, C) has the same functional depen-

dency n(T, C) for all countries, but allow for model parameters θ to be country specific so that

ni(T, C) = n(T, C; θi). In this case, we sample models from the posterior distribution p(n|D),

where D = {Di} includes all country-specific datasets (Methods) [23].

Fig 1. Estimation and prediction of the incidence I(t) in synthetic data. We consider four simulated epidemic scenarios: (a-d) decreasing incidence after a peak; (e-h)

increasing incidence leading to a peak; (i-l) a complete wave; and (m-p) two consecutive waves. For each of these scenarios, we consider four testing and reporting models

(see Methods for details): constant reporting exponent n = −1 and testing that grows indefinitely with incidence (left column); constant reporting exponent n = −2 and

testing that grows indefinitely with incidence (center-left column); variable reporting exponent n = −α log C and testing that grows indefinitely with incidence (center-

right column); variable reporting exponent n = −α log C and testing that saturates at high incidence values (right column). Black dots represent the ground truth

incidence I(t); the black area represents the reported cases C(t); and the green line represents the incidence estimated by the BMS after obtaining a closed-form expression

for the reporting exponent n(C, T). We simulate 200 days; we use the first 40 day for training (shaded area) and the last 160 for testing (white area). In all cases, the BMS is

able to identify the correct closed-form model for the reporting experiment n(C, T), and thus provides optimal estimates of real incidence.

https://doi.org/10.1371/journal.pcbi.1012687.g001
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In both cases, we obtain models with the BMS using the first four months of data (August

2020 to November 2020). We report results for: (i) the median of the whole ensemble of mod-

els sampled by the BMS (ensemble model); (ii) the single closed-form model that most resem-

bles the median ensemble prediction (median predictive model). To evaluate the predictive

power of the proposed models, we then use those models to make predictions during the last

two months of the data (December 2020 and January 2021, which were not used for training),

and measure the mean absolute error (MAE) of the predictions. All reported values for the

MAE are on these test data only. Note that, after training, the reporting exponent n(t), the

reporting rate ρ(t), and real incidence I(t) are all estimated from T(t) and C(t) alone, which

were typically available daily during the COVID-19 pandemic, with little delay or error in the

countries considered. Therefore, our empirical validation closely emulates predictions made

in real time during the two test months following training. In real settings, delays in reporting

and “occurred but not reported events” could be corrected for, if necessary, using well-estab-

lished methods [26]. Note also that C(t), the empirical I(t) and the different model estimates

for I(t) are not consistently and significantly shifted with respect to each other; therefore, we

do not need any additional correction for time delays. (In some situations in which delays are

larger, it may be necessary to shift I(t) or C(t) prior to training, and take this shift into account

when making predictions.).

We start by studying whether the reporting exponent n is well approximated by a constant

value, as previously assumed by Chiu et al. [18]. As we show in Fig 2, we find that n fluctuates

considerably in time in the period considered, especially in the early months. Except for India,

the overall tendency of the exponent is to become more negative with time. Besides the fact

that it is visually apparent that the reporting exponent changes in time, we provide two addi-

tional quantitative arguments that confirm this observation. First, for the training period

August through November, 2020, the BMS finds models that have shorter description length

than the n = const. model. These models are more plausible and more compressive of the data,

and therefore are objectively better models for the training period. Second, the models pro-

posed by the BMS are more predictive on the test data, that is, for the extrapolation to months

December 2020 through January 2021 (Fig 2). Indeed, for seven of the nine countries consid-

ered, all BMS models are better than the constant model. For another country, Hungary, the

best model is still a BMS model, but the constant model is better than some BMS models. Can-

ada is the only country for which the BMS does not find a model for the exponent that is better

than a constant. Note, however, that for Canada n(t) happens to be quite constant in the test

period, which explains why the constant model is the most compressive and also explains the

fact that all models make excellent predictions with very small error. Had we taken a different

test period (for example, August through September, 2020) the prediction error of the constant

model would have been larger also for Canada.

Variable reporting exponents lead to accurate predictions of reporting rate

and incidence

The closed-form models n(T, C) obtained by the BMS for the reporting exponent allow us to

estimate the reporting rate ρ(t) and, from Eq (1), the daily incidence I(t). As in the previous

section for the exponent n, we use the models obtained by the BMS to make predictions for

the reporting rate (Fig 3) and the incidence in the test months (December 2020 through Janu-

ary 2021) (Fig 4). As before, we find that the models obtained with the BMS lead to more accu-

rate predictions for the reporting rate and the incidence (as measured by the prediction MAE)

for all countries except Canada, where the constant exponent performs slightly better despite
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Fig 2. Estimation and prediction of the reporting exponents n(t) for different countries. (a) Belgium; (b) Canada; (c) Catalonia; (d) Croatia; (e) France; (f) Hungary;

(g) India; (h) Italy; (i) United Kingdom. The exponent determines the relationship among the real incidence I, the reported cases C and the test rate T. For each country

we show the estimated exponent, as well as the following models (see Methods): (i) the constant exponent model (solid pink line); (ii) the median of the ensemble of

models obtained by the BMS (blue and orange solid lines), both when we model all countries together (blue: global ensemble model, GEM) and when we obtain

individual models for each country (orange: national ensemble model, NEM); (iii) the median predictive model (dashed lines) obtained by the BMS, both when we model

all countries together (green: median predictive global ensemble model, MPGEM) and when we obtain individual models for each country (brown: median predictive

national ensemble model, MPNEM). Shaded regions indicate the interquartile range for model ensembles. We obtain the models using only data from August to the end

of November, 2020 (shaded region). We then use those models to predict on the test data, December 2020 through January 2021. The insets show the mean absolute error
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the fact that all models are very accurate. As mentioned earlier, this is due to the fact that, in

Canada, n is fairly constant for the duration of our test period.

A single model for all countries is more parsimonious than country-

specific models

Up to now, we have shown that mathematical models obtained with the BMS lead to accurate

estimations and predictions of the reporting exponent, the reporting rate, and the incidence.

In general, these predictions are more accurate than those provided by the model that assumes

a constant exponent. However, it is also interesting to compare models obtained by the BMS

to one another.

As noted earlier, we use the BMS to obtain two families of models. In the first family, a dif-

ferent set of models ni(T, C) is obtained for each country. This means that models of each

country can have completely different mathematical forms and dependencies on T and C. In

the second family, the same set of models n(T, C;θi) is used for all of the countries, allowing

only the parameters θi to change from country to country. If testing dynamics were radically

different in each country, the family of country-specific models may be expected to be more

predictive. Otherwise, a global model may be applicable to all countries. In this case, training

concurrently with the data of all countries should lead to more accurate predictions, since

information about each country is actually used by all other countries, thus resulting in more

robust models.

Consistent with the latter scenario, the models obtained by considering all countries

together yield more accurate predictions than country-specific models (see Figs 2, 3 and 4). In

other words, a single model (that is, a single functional dependency on T and C) for all coun-

tries is more parsimonious than one model for each country. This result is perhaps surprising,

considering the important differences in reporting rate that have been found even within

regions of the same country [6–8]. It suggests that sampling bias and under-reporting emerge

from mechanisms that are common to all countries, raising questions about the nature of such

mechanisms. We speculate that such mechanisms may be related to: (i) the availability (and

limitations of) the testing infrastructure; (ii) the procedures used to select individuals for test-

ing, which are typically biased towards those individuals that are more likely to be infected;

and (iii) social and political pressures arising from pandemic states, and to collective public

reactions to such states. From a more practical standpoint, the possibility to parametrize all

countries within a single model is an important simplification. This can be a crucial advantage

when it comes to rapid and widespread implementation, especially in situations where time is

of the essence, such as during an outbreak.

Discussion

In a post-COVID world, where the crisis has receded, it remains imperative to remember the

lessons learned from it. Lack of reliable real-time incidence and prevalence estimators was a

critical handicap during the COVID-19 pandemic. This deficiency compromised the timely

implementation of interventions, often resulting in delayed actions, extended periods of

social distancing, and other stringent measures, and diminishing their overall effectiveness.

In this context, our research posits that employing machine learning, specifically Bayesian

(MAE) of each model on the test data. All MAE are displayed using the same scale, so that one can see which countries are easier to predict and which are more difficult.

For all countries except Canada, the most accurate model is one of the BMS models.

https://doi.org/10.1371/journal.pcbi.1012687.g002
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Fig 3. Estimation and prediction of the reporting rate ρ(t) for different countries. (a) Belgium; (b) Canada; (c) Catalonia; (d) Croatia; (e) France; (f) Hungary; (g)

India; (h) Italy; (i) United Kingdom. The reporting rate is modeled as ρ = T−n from the modeled reporting exponent n(T, C) and the observed cases C and testing rate T.

For each country we show the estimated repoprting rate ρ(t) (black dots), as well as the following models: (i) the constant exponent model (solid pink line); (ii) the

median of the ensemble of models obtained by the BMS (blue and orange solid lines), both when we model all countries together (blue: global ensemble model, GEM)

and when we obtain individual models for each country (orange: national ensemble model, NEM); (iii) the median predictive model (dashed lines) obtained by the BMS,

both when we model all countries together (green: median predictive global ensemble model, MPGEM) and when we obtain individual models for each country (brown:

median predictive national ensemble model, MPNEM). Shaded regions indicate the interquartile range for model ensembles. We use the same models as in Fig 2,
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symbolic regression, to forecast the incidence of infectious diseases could be a transformative

advancement.

Absent a comprehensive approach for real-time, large-scale population monitoring, we

must rely on proxies to estimate incidence. Throughout the pandemic, the routine monitoring

of reported cases in most countries proved inadequate for accurately gauging the true inci-

dence of infection. This shortfall was due to logistic limitations, and the inability to detect

asymptomatic individuals and those who avoided testing for various reasons. Consequently,

the reported case figures necessitate correction to reflect the true incidence accurately. Similar

shortcomings and their implications have been identified and discussed before in the context

of COVID-19 and other diseases [6–8]. In our study, we have used Bayesian symbolic regres-

sion to develop mathematical models for this necessary correction. These models incorporate

the number of tests conducted daily and the reported cases, enabling more precise estimations

of the actual disease incidence beyond the training period. Although our analysis has focused

on COVID-19, it is completely general and it could be used for any future epidemic, provided

that incidence can somehow be estimated for a given training period, and testing and detection

data are reported daily.

Our models are significantly more accurate than previous attempts to use simple heuristic

functional forms. Additionally, our models are formulated as closed-form mathematical

expressions, characterized by elementary functions and a limited number of parameters. This

structure contrasts with the complex models typically derived from other machine learning

methods, such as deep learning, and potentially facilitates ease of deployment and usability for

public health experts. Along these lines, we discovered that a single model, adjustable for each

country, is more parsimonious and yields more accurate incidence estimations than separate

models for each country. This somewhat unexpected finding suggests a degree of uniformity

in national responses to specific epidemiological situations, meriting further in-depth explora-

tion. This insight, a direct result of symbolic regression’s capacity to generate closed-form

models, could not have been extracted from standard machine learning techniques.

However, we have not yet been able to use symbolic regression to its full potential. As we

have discussed, the closed-form models we obtain are predictive, and they provide some

degree of insight (the reporting exponent is not constant and depends on the state of the epi-

demics; one model for all countries is more parsimonious than a different model for each

country); but they are not easily interpretable otherwise. Despite our efforts to interpret the

resulting models, we have not been able to identify defining features or terms that could pro-

vide more precise insight about the mechanisms responsible for under-reporting. This is

somehow expected, considering that they capture the behavior of countries as different as, for

example, Canada and India; but we expect that future work will be able to propose simple

ansatz for such models, and progress by restricting the search space of models, and/or by com-

paring simple plausible models to those identified by symbolic regression.

We also expect that further analyses, perhaps with new data or different time windows, may

reveal additional insights. Indeed, here we have restricted our analysis to a single epidemic sce-

nario (COVID-19 during the second half of 2020), and we cannot rule out the possibility that

the identified models are somehow “overfit” to this scenario. Future work may try to apply the

same approach to different scenarios simultaneously, and perhaps then simpler models, corre-

sponding to more general mechanisms, may become apparent.

obtained using only data from August to the end of November, 2020 (shaded region). We then use those models to predict reporting rate on the test data, December 2020

through January 2021. The insets show the mean absolute error (MAE) of each model on the test data. All MAE are displayed using the same scale, so that one can see

which countries are easier to predict and which are more difficult. For all countries except Canada, the most accurate model is one of the BMS models.

https://doi.org/10.1371/journal.pcbi.1012687.g003
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Fig 4. Estimation and prediction of incidence I(t) for different countries. (a) Belgium; (b) Canada; (c) Catalonia; (d) Croatia; (e) France; (f) Hungary; (g) India; (h)

Italy; (i) United Kingdom. The incidence is estimated as I = Tn × C from the modeled reporting exponent n(T, C) and the observed cases C and testing rate T. For each

country we show the estimated incidence I(t) (black dots) and the reported cases C(t) (black area), as well as the following models: (i) the constant exponent model (solid

pink line); (ii) the median of the ensemble of models obtained by the BMS (blue and orange solid lines), both when we model all countries together (blue: global ensemble

model, GEM) and when we obtain individual models for each country (orange: national ensemble model, NEM); (iii) the median predictive model (dashed lines)

obtained by the BMS, both when we model all countries together (green: median predictive global ensemble model, MPGEM) and when we obtain individual models for

each country (brown: median predictive national ensemble model, MPNEM). Shaded regions indicate the interquartile range for model ensembles. We use the same

models as in Fig 2, obtained using only data from August to the end of November, 2020 (shaded region). We then use those models to predict incidence on the test data,

December 2020 through January 2021. The insets show the mean absolute error (MAE) of each model on the test data. All MAE are displayed using the same scale, so

that one can see which countries are easier to predict and which are more difficult. For all countries except Canada, the most accurate model is one of the BMS models.

https://doi.org/10.1371/journal.pcbi.1012687.g004
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In any case, we think that our findings hold promise for future epidemic surveillance and

management. They serve as a vital reminder that the insights gleaned from the COVID-19

pandemic must inform our approaches to future health crises.

Materials and methods

Data

The data consists in the daily number of positive tests, tests made, and reported deaths from 1

August 2020 to 31 January 2021 (i.e., during the second wave of the COVID-19 epidemic) for

9 different countries: Belgium, Canada, Catalonia, Croatia, France, Hungary, India, Italy, and

United Kingdom. These countries were chosen according to the availability and the complete-

ness of data in the period we study. These data are publicly available at https://ourworldindata.

org/; the details and the methodology for the data collection are described in Hasell et al. [27].

For the same period, we also use the data for Catalonia (Spain) collected by the Generalitat de

Catalunya and available at https://dadescovid.cat/descarregues. For each data stream (daily

number of reported cases, tests and deaths for each country), we use a 7-day moving average,

that is, the average computed from day t − 6 to day t.
To infer the number of daily infections from the reported deaths as described in the next

section, we used the estimate of the infection fatality rate (IFR), that is the probability that an

infected person dies, provided the World Health Organization (WHO) [28] and obtained by

studies of the seroprevalence in the countries we consider (see Table 1).

Estimating real incidence via deconvolution of fatalities

We used daily reported deaths to construct the ground truth against which to train and com-

pare our data-driven models. Daily fatalities are, in general, informative about the infections

occurred in previous days. However, the time elapsed between infection and death (time-to-

death) depends on several factors and, as a result, can be highly variable among patients.

According to Garcia et al. [29] and Linton et al. [30] a good choice for the time-to-death distri-

bution is a lognormal distribution with a mean value of 20.1 days and a median equal to 18.8.

These estimates were based on data about the first wave of the COVID-19 epidemic in early

2020. It is reasonable to believe that this amount of days may have slightly changed during the

second wave in the late 2020. Faes et al. [31] stated that over the course of the first wave, the

length of stay in hospital decreased two days on average from the onset of the first wave to the

later stages of the first wave. Therefore, we choose to adopt a lognormal distribution with

mean and median equal to 18.1 and 16.8 days, respectively. Nonetheless, we performed a

Table 1. Population and infection fatality rate (IFR) [28] for the considered countries.

Country Population IFR

Belgium 11,660,799 0.0087

Canada 38,213,305 0.0059

Catalonia 7,697,069 0.0092

Croatia 4,070,275 0.0014

France 65,476,462 0.0030

Hungary 9,626,188 0.0054

India 1,399,362,910 0.0007

Italy 60,337,813 0.0120

UK 68,390,408 0.0093

https://doi.org/10.1371/journal.pcbi.1012687.t001
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sensitivity analysis considering also 20.1 and 16.1 days for the mean, and 18.8 and 14.8 days

for the median.

Signal deconvolution provides a method to infer the real number of infections using

reported deaths and a time-to-death distribution. According to Gostic et al. [32], deconvolu-

tion is more accurate than convolving the observation time series with the reversed (backward)

delay distribution. This is because backward convolution unrealistically spreads out infections

across too many days in the past. We chose to use the Richardson-Lucy deconvolution algo-

rithm [16] as we describe in what follows.

First, we need to model the stochastic process that determines the number of individuals

δ(t) infected on day t who will die due to the infection. Let p be the probability of dying from a

COVID-19 infection. Because p is small we can model the number of infected people at day t
who will later die due to the infection as a Poisson variable with mean λ(t) = p × I(t).

To estimate the real incidence for t1� t� t2 we have to obtain the vector of unknown

parameters ðlt1 ; . . . ; lt2Þ. Let (1, . . ., N) be the days in which the number of deaths is available.

Because most of deaths occur between 5 and 50 days after the infection, we can estimate the

daily incidence curve between t1 = −49 and t2 = N − 5.

The procedure consists in applying an expectation maximization algorithm, which iterates

in the space of parameters producing a sequence l
n
¼ ðl

n
t1
; . . . ; l

n
t2
Þ. The initial guess l

0
¼

ðl
0

t1
; . . . ; l

0

t2
Þ can be the death curve shifted back by the number of days as the peaks in the

time-to-death distributions. If we indicate with d the delay distribution then di is the probabil-

ity that an infected person will die after i days from the infection. We also indicate with Di the

number of reported deaths in day i. Now, we can define

qj ¼
X

� jþ1�i�N� j

di; ð4Þ

which is the probability that an infected at time j will die in the interval 1, . . ., N and

Dn
i ¼

X

j<i

di� j l
n
j ; ð5Þ

which is the expected number of deaths to occur on day i, conditional on the parameters λn.

Here t2� j� t2. Then we can write

l
nþ1

j ¼
l
n
j

qj

X

i>j

di� j Di

Dn
i

: ð6Þ

For the nth iteration the expected number of deaths on day i is Eni ¼
P

j<il
n
j di� j. If λn were the

true parameters Di would be Poisson distributed with mean Eni and the expectation E ðEni � DiÞ
2

Eni

� �

would be 1. Therefore, as suggested in [16] it is more convenient to stop the iteration when the

normalized χ2 statistic

w2 ¼
1

N

X

i

ðEni � DiÞ
2

Eni
; ð7Þ

is less than 1 for the first time.

Once the correct parameters are obtained, choosing p as the IFRs reported in [28] we infer

the incidence curve I(t).
We note that, within this approach, the delay between infection and detection has relatively

mild effects. Although cases are detected a few days after infection, if the time between
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infection and detection is sufficiently narrowly distributed, then both curves are just shifted in

time. The need for a time correction would be evident if the curves C(t) and I(t) used for train-

ing were shifted. We do not implement any such shifting, because our C(t) and our I(t) esti-

mated by deconvolution are not significantly shifted.

Bayesian machine scientist

The Bayesian machine scientist [22, 23] is a symbolic regression algorithm that, in the present

context, samples closed-form models for the reporting exponent ni(T, C) from the posterior

distribution P(ni|D), which gives the probability of model ni(T, C) being the one that truly gen-

erated the data D, conditioned on the data. The posterior is

PðnijDÞ ¼
Z

Y

PðnijD; yiÞdyi

¼
1

PðDÞ

Z

Y

PðDjni; yiÞPðyijniÞPðniÞdyi

¼
e� LðniÞ

ZðDÞ
;

ð8Þ

where Z(D)� P(D) is the evidence, θi are the parameters of the model, and the integral is over

the space Θ of possible values of the parameters. The description length LðniÞ in Eqs (3) and

(8) can be decomposed in two terms

LðniÞ ¼ LLðDjniÞ þ LPðniÞ : ð9Þ

Here, LPðniÞ � � log PðniÞ is the contribution of the prior over models to the description

length, which encapsulates our expectations about models prior to any observation of data.

Following Ref. [22], we set this prior distribution using a maximum entropy principle.

The other term in the description length is

LLðniÞ � � log
1

Z

Z

Y

PðDjni; yiÞPðyijniÞdyi

� �

; ð10Þ

that is, the integrated likelihood encapsulating the contribution of the goodness of fit of model

ni(T, C) to the description length. Since, in general, this integral cannot be calculated exactly,

we use the Laplace approximation to obtain an analytical result. This approximation assumes

that the likelihood p(D|ni, θi) is peaked around the maximum likelihood estimators of the

parameters y
∗
i , and leads to [22]

LL � �
BðD; niÞ

2
; ð11Þ

where B(D, ni) is the Bayesian information criterion (BIC), defined as

BðD; niÞ ¼ � 2 log PðDjni; yiÞjy∗i þ L logN : ð12Þ

Here, L is the total number of parameters in ni and N is the size of the dataset D.

When looking for a single model n(T, C) that fits the data of all countries simultaneously,

the above arguments remain identical, except for the fact that LLðnÞ becomes the sum of the

individual description lengths of each country [23].

From Eqs (3) and (8) it is clear that the model that maximizes the posterior p(ni|D) (the

most plausible model given the data) is also the model that minimizes the description length

[25, 33]; that is, that the best model is the model that better compresses the data and the model.
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Model ensemble predictions and median predictive model

We use a Markov chain Monte Carlo to sample the posterior distributions P(ni|D) for the

national ensemble of models (NEM; models for each country separately), and P(n|D) for the

global ensemble of models (GEM; global models for all countries). We sample the models

using data from the training period August 2020 to November 2020 obtaining a set of models

for each country fnai ðT;CÞg for the NEM and a set of models {nα(T, C)} for the GEM. From

each sample, in Figs 2 and 4 we plot the model ensemble prediction and the median predictive

model, as described next.

We compute model ensemble predictions (full lines in Figs 2 and 4) as follows. For each

sampled model α, we compute the predicted exponent at time t. Then, we compute the median

prediction over sampled models

nNEM
i ðTðtÞ;CðtÞÞ ¼ Medianaðnai ðTðtÞ;CðtÞÞÞ ð13Þ

for the NEM, and

nGEM
i ðTðtÞ;CðtÞÞ ¼ MedianaðnaðTðtÞ; PðtÞ; yiÞÞ ð14Þ

for the GEM.

We obtain the predictions of the median predictive model (dashed lines in Figs 2 and 4) as

follows. In the national ensemble, for each country we select the individual model, among

those sampled, that most resembles the median prediction of the ensemble in terms of the

mean absolute error; this is the country’s median predictive model of the NEM (MPNEM).

Similarly, we select the individual model that most resembles the median predictions of the

global ensemble in terms of the mean absolute error; this is the median predictive model of the

GEM (MPGEM).

Validating the Bayesian machine scientist through compartmental

epidemic models

To test the ability of the BMS to recover the true incidence from data on reported cases and

tests, we simulated epidemic scenarios using the well-known susceptible-infectious-recovered

(SIR) model (Kermack and McKendrick [34]). The SIR model is a fundamental framework in

epidemiology used to describe the spread of infectious diseases within a population; it parti-

tions the population into three compartments: susceptible S, who can contract the disease;

infectious I, who are currently infected and can transmit the disease; and recovered R, who

have gained immunity or died, thus no longer participating in disease transmission.

The dynamics of the SIR model are governed by a set of differential equations:

dS
dt
¼ � bSI;

dI
dt
¼ bSI � gI;

dR
dt
¼ gI:

Here, β represents the transmission rate, which quantifies the rate at which susceptible individ-

uals contract the disease upon contact with infectious individuals. The parameter γ is the

recovery rate, which describes the rate at which infectious individuals recover and move to the

recovered compartment. The product βSI represents the rate of new infections, assuming
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homogeneous mixing in the population. The term γI represents the rate at which infectious

individuals recover.

We chose different combinations of initial conditions and parameters to simulate epidemi-

ological scenarios similar to those observed in the data. Specifically, we simulated: (i) a grow-

ing phase, (ii) a decreasing phase, (iii) a complete epidemic wave, and (iv) two successive

waves. To reproduce the two waves in the last scenario, we introduced a temporal dependency

in the transmission parameter, following Mummert et al. [35]

bðtÞ ¼ b0 þ b1 cos ð2pt=365Þ; ð15Þ

where setting β1 to zero, we recover the old constant transmission rate β0. In Table 2 we

detailed the chosen values of the parameters and initial conditions.

Succesively, the SIR model can be modified by adding or removing compartments within

the population. Several studies have simulated testing processes and the subsequent registra-

tion of cases [7, 8, 36, 37]. In our work, we adopted a similar approach, assuming that the daily

number of tests administered to the population and the subsequent number of detected cases

are two different fractions of the true incidence on the same day, expressed as T = fT I and C =

fC I. Initially, we considered fT and fC as constants. For fC, we also explored the possibility of it

being a function of T and C. Specifically, to align with our case study, we modeled fC as a

power law of the daily tests, fC = aTn, for two values of the exponent n = 1, and 2, with a con-

stant factor. Additionally, we examined scenarios where the exponent is not constant, but has

a logarithmic dependency on the number of reported cases, T−b log C, with b constant. Further-

more, for this last case, we considered the daily number of tests not as a constant fraction of

the incidence but following T = A(1 − e−I/B), that is, an initial linear dependency, eventually

saturating as the incidence increases. In Table 3 we summarize the investigated scenarios with

the corresponding parameters.

Author Contributions

Conceptualization: Alex Arenas, Marta Sales-Pardo, Roger Guimerà.

Table 2. Parameter values for different epidemiological scenarios. The compartments S, I and R express fractions of

the total population (100000).

β0 β1 γ S(0) I(0) R(0)

Single wave 0.2 0 0.1 0.799 0.001 0.2

Growth Phase 0.15 0 0.1 0.799 0.001 0.2

Decline Phase 0.15 0 0.1 0.785 0.015 0.2

Two waves 0.75 0.3 0.3 0.796 0.004 0.2

https://doi.org/10.1371/journal.pcbi.1012687.t002

Table 3. Models and parameters to generate Tests and Reported Cases. We indicated with τ the total number of

days considered in the simulations.

Tests Reported Cases

T = fT I, fT = 0.5 C = fC I, fC = 0.2

C ¼ aTn I; a ¼ 0:2 tP
t
TnðtÞ

; n ¼ 0:5; 1; 2

C = T−b log C I, b = 0.03

T = A(1 − e−I/B), A = 0.15, B = 0.3 C = T−b log C I, b = 0.04

https://doi.org/10.1371/journal.pcbi.1012687.t003
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