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Network analysis is currently used in a myriad of contexts, from
identifying potential drug targets to predicting the spread of
epidemics and designing vaccination strategies and from finding
friends to uncovering criminal activity. Despite the promise of
the network approach, the reliability of network data is a source
of great concern in all fields where complex networks are stud-
ied. Here, we present a general mathematical and computational
framework to deal with the problem of data reliability in com-
plex networks. In particular, we are able to reliably identify both
missing and spurious interactions in noisy network observations.
Remarkably, our approach also enables us to obtain, from those
noisy observations, network reconstructions that yield estimates
of the true network properties that are more accurate than those
provided by the observations themselves. Our approach has the
potential to guide experiments, to better characterize network
data sets, and to drive new discoveries.

data reliability | block model | modularity | node roles | Bayesian inference

T he structure of the network of interactions between the units
of a system affects the system’s dynamics and conveys infor-

mation about the functional needs of the system, its evolution,
and the role of individual units. For these reasons, network analy-
sis has become a cornerstone of fields as diverse as systems biology
and sociology (1). Unfortunately, the reliability of network data
is often a source of concern. In systems biology, high-throughput
technologies hold the promise to uncover the intricate processes
within the cell but are also reportedly inaccurate. Protein inter-
action data provide, arguably, the most blatant example of data
inaccuracy: In 2002, a systematic comparison of several high-
throughput methods to a reference high-quality data set showed
that these methods have accuracies below 20% (2). Additionally,
different methods result in networks that have different topolog-
ical properties (3), and the coverage of real interactomes is very
limited: 80% of the interactome of yeast (3) and 99.7% of the
human interactome (4, 5) are still unknown.

In the social sciences, missing data due to individual non-
response and dropout (6), informant inaccuracy (7), and sampling
biases (8) are also pervasive. Simulation studies have established
that these inaccuracies can lead to fundamentally wrong estimates
of network properties and to misleading conclusions (8), which is
particularly worrisome at a time when social network analysis is
being used for finding new friends and partners, singling out key
individuals in organizations, and identifying criminal activity.

Despite these concerns, the issue of network reliability has only
been addressed in a field-by-field basis [for example, to deal with
protein–protein interactions (9, 10) or to take into account infor-
mant inaccuracy in social networks (7)], and in studies that only
address parts of the problem [for example, to detect missing inter-
actions (11)]. Therefore, a general framework to deal with the
problem of data reliability in complex networks is lacking. Here,
we develop such a framework. Specifically, we show that within
our framework we can reliably (i) identify false negatives (miss-
ing interactions) and false positives (spurious interactions) as well
as (ii) generate, from a single observed network, a reconstructed
network whose properties (clustering coefficient, modularity,

assortativity, epidemic spreading threshold, and synchronizability,
among others) are closer to the “true” underlying network than
those of the observed network itself. We show that our approach
outperforms previous attempts to predict missing and spurious
interactions, and illustrate the potential of our method by apply-
ing it to a protein interaction network of yeast (12). We end by
discussing how our approach will help to guide experiments and
new discoveries, and to better characterize important data sets.

General Reliability Formalism
Consider an observed network with adjacency matrix AO; AO

ij = 1
if nodes i and j are connected and 0 otherwise. We assume that
this observed network is a realization of an underlying probabilistic
model, either because the network itself is the result of a stochastic
process, because the measurement has uncertainty, or both (7).∗
Let us call M the set of generative models that could conceivably
give rise to the observed network, and p(M|AO) the probability
that M ∈ M is the model that gave rise to the observation AO.
If we could get a new observation of the network, the outcome
would in general be different from AO; our best estimate for the
probability p(X = x) for an arbitrary network property X is

p(X = x|AO) =
∫

M
dM p(X = x|M) p(M|AO) , [1]

where p(X = x|M) is the probability that X = x in a network
generated with model M . Using Bayes theorem, we can rewrite
Eq. 1 as

p(X = x|AO) =
∫
M dM p(X = x|M) p(AO|M) p(M)∫

M dM ′ p(AO|M ′)p(M ′)
, [2]

where p(AO|M) is the probability that model M gives rise to AO

among all possible adjacency matrices, and p(M) is the a priori
probability that model M is the correct one. We call p(X = x|AO)
the reliability of the X = x measurement.

Stochastic Block Models
Given the generality of these arguments, the key to good estimates
of reliability is to identify sets of models that are general, empir-
ically grounded, and analytically or computationally tractable.
Here, we focus on the family MBM of stochastic block models
(13, 14). In a stochastic block model, nodes are partitioned into
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Fig. 1. Stochastic block models. A stochastic block model is fully specified
by a partition of nodes into groups and a matrix Q in which each element Qαβ

represents the probability that a node in group α connects to a node in group
β. (A), A simple matrix of probabilities Q. Nodes are divided in three groups
(which contain 4, 5, and 6 nodes, respectively) and are represented as squares,
circles, and triangles depending on their group. The value of each element
Qαβ is indicated by the shade of gray; for example, squares do not connect
to other squares, and connect to triangles with small probability, but squares
connect to circles with high probability. (B) A realization of the model in A.
In this realization, the number of links between the square and the triangle
group is l�� = 4, whereas the maximum possible number of links between
these groups is r�� = 24.

groups and the probability that two nodes are connected depends
only on the groups to which they belong (Fig. 1).

Stochastic block models are empirically grounded in that they
capture two ubiquitous and fundamental properties of real com-
plex networks. First, nodes in real networks are often organized
into modules or communities (15, 16), which may overlap (17)
or be hierarchically nested (11, 18, 19), so that connections are
relatively more abundant within modules than between modules.
In most real-world networks, this modularity is significantly larger
than expected from chance (16, 20). Second, nodes in real net-
works fulfill distinct roles and connect to each other depending on
these roles (13, 16). Role-to-role connections are not necessarily
assortative (16, 21); that is, nodes with a certain role may or may
not tend to connect with other nodes with the same role. In gen-
eral, stochastic block models are particularly appropriate when
nodes belong to groups and interact with each other depending
on their group membership (regardless of whether interactions
occur mostly within groups or between groups).

Stochastic block models are also appropriate in that they can
capture other more general connectivity correlations in the net-
work. For example, if people establish social connections with
others according to age, then a block model that partitions indi-
viduals into age groups will capture some of the correlations in
the network.

In general, complex networks result from a combination of
mechanisms, including modularity, role structure, and maybe
other factors. Although partitions into modules, roles, and age
groups, for example, can be very different from each other, some
block model in the MBM family is likely to capture each of them
separately; by sampling over all models M ∈ MBM we capture a
variety of correlations, ideally to the exact degree that they are
relevant.

Additionally, stochastic block models are analytically tractable
because in a stochastic block model the probability that nodes i and
j are connected depends only on the groups to which they belong
(14). Therefore, we can calculate the reliability of individual links
and the reliability of entire networks.

Link Reliability: Missing and Spurious Interactions
The reliability of an individual link is RL

ij ≡ pBM(Aij = 1|AO), that
is, the probability that the link “truly” exists given our observation
of the whole network (and our choice of the family of stochastic
block models). Assuming no prior knowledge about the suitability
of the models, we obtain (Materials and Methods)

RL
ij = 1

Z

∑
P∈P

(
lO
σiσj

+ 1

rσiσj + 2

)
exp[−H(P)], [3]

where the sum is over partitions P in the space P of all possible
partitions of the network into groups, σi is node i’s group (in parti-
tion P), lO

αβ is the number of links in the observed network between
groups α and β, and rαβ is the maximum possible number of links
between α and β (Fig. 1). The function H(P) is a function of the
partition

H(P) =
∑
α≤β

[
ln(rαβ + 1) + ln

(
rαβ

lO
αβ

)]
, [4]

and Z =∑P∈P exp[−H(P)].
In practice, it is not possible to sum over all partitions even for

small networks.† However, since Eq. 3 has the same mathemat-
ical form as an ensemble average in statistical mechanics (22),
one can use the Metropolis algorithm to correctly sample relevant
partitions (that is, partitions that significantly contribute to the
sum) and obtain estimates for the link reliability (Materials and
Methods).

We use the link reliability to identify missing and spurious inter-
actions in network observations. We evaluate the performance of
our approach using five high-quality networks: the social network
of interactions between people in a karate club (23), the social
network of frequent associations between 62 dolphins (24), the
air transportation network of Eastern Europe (25), the neural
network of the nematode Caenorhabditis elegans (26), and the
metabolic network of Escherichia coli (27, 28). All of these net-
works have been manually curated and are widely used in the
literature as model systems. Therefore, in what follows we assume
that each of these networks is the “true” network AT and is error-
free. We then generate hypothetical observations AO by adding or
removing random connections from AT , and evaluate the ability
of our approach to recover the features of the true network.‡

To quantitatively study missing interactions, we generate
observed networks AO by removing random links from the true
network AT . We then estimate the link reliability RL

ij for each of
these false negatives (AO

ij = 0 and AT
ij = 1), as well as for the

true negatives (AO
ij = 0 and AT

ij = 0). We measure the algorithm’s
ability to identify missing interactions by ranking the reliabilities
(in decreasing order) and calculating the probability that a false
negative has a higher ranking than a true negative (11). Similarly,
we quantify the ability to identify spurious interactions by adding
random links to the true network, obtaining and ranking the link
reliabilities (again, in decreasing order), and calculating the prob-
ability that a false positive (AO

ij = 1 and AT
ij = 0) is ranked lower

than a true positive (AO
ij = 1 and AT

ij = 1).
In Fig. 2, we compare our approach to the hierarchical ran-

dom graph (HRG) approach of Clauset et al. (11) and to a local
algorithm based on the number of common neighbors between
each pair of nodes [Materials and Methods; see also Fig. S1 in
supporting information (SI) Appendix for a comparison to other
local algorithms] (11, 29). We find that, except for one network,
our approach consistently outperforms all others at identifying
both missing interactions and spurious interactions. Our approach
is also the only one that performs consistently well for all networks
(unlike local algorithms, which work well for some networks but
very poorly for others) and for both missing and spurious interac-
tions (unlike the HRG algorithm, which performs comparatively

†The number of distinct partitions of N elements into groups is∑N
k=1

1
k!
∑k

l=1
(k

l
)

(−1)k−l lN , which grows faster than any finite power of N.
‡By adding and removing connections in this way, we are implicitly focusing on random

errors; we discuss at the end how our approach can also deal with systematic (or, in
general, correlated) errors.
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Fig. 2. Identification of missing and spurious links.
We compare the approach presented here (black cir-
cles), to the approach of Clauset et al. (11) (white
squares) and to a local algorithm based on the num-
ber of common neighbors between pairs of nodes
(11, 29) (white triangles) (Materials and Methods;
see also SI Appendix for a comparison to other local
algorithms). (A–E) Missing interactions. For each
true network AT we remove a fraction f of its links to
generate an observed network AO, calculate the link
reliability RL

ij for each pair of nodes, and rank pairs
of nodes in order of decreasing reliability. Accuracy
is calculated as the probability that a false nega-
tive (one of the links we removed, that is, AO

ij = 0

but AT
ij = 1) has a higher ranking than a true neg-

ative (AO
ij = 0 and AT

ij = 0). The dashed line indi-
cates the baseline accuracy when false negatives
and true negatives are randomly ranked. (F–J) Spu-
rious interactions. For each true network AT we add
a fraction f of links to generate an observed net-
work AO, calculate the link reliability RL

ij for each
pair of nodes, and rank pairs of nodes in order of
decreasing reliability. Accuracy is calculated as the
probability that a false positive (one of the links
we added, that is, AO

ij = 1 but AT
ij = 0) has a

lower ranking than a true positive (AO
ij = 1 and

AT
ij = 1). The dashed line indicates the baseline accu-

racy when false positives and true positives are ran-
domly ranked. Scores for algorithms other than the
present approach are obtained as described earlier
(11) (Materials and Methods) and ties are randomly
broken when necessary.

worse at detecting spurious interactions§). Our algorithm is also
consistently the most accurate when applied to a number of model
networks, including networks with hierarchically nested modules,

§A plausible explanation for this behavior is that, because in the HRG model most para-
meters are used to “fit” low-level features of the network (pairs of nodes, triplets of
nodes, and so on), the HRG approach may overfit spurious links.

networks with a strongly disassortative role structure, and non-
modular scale-free networks (Fig. S2 in SI Appendix). We find
that only when the network is strictly a hierarchical random
graph, is the HRG approach slightly more accurate at predict-
ing missing interactions than the BM approach (Sections 2 and 3
in SI Appendix). Remarkably, even for strict hierarchical random
graphs, the BM approach is more accurate at identifying spurious
interactions.
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Network Reliability and Network Reconstruction
The success at detecting both missing and spurious interactions
confirms that our approach is able to uncover the structural fea-
tures of the true network AT . The natural question is thus whether
it is possible to “reconstruct” the observation AO to gain greater
insight into the global structure of AT . This is difficult because, in
general, adding a few candidate missing interactions and remov-
ing a few candidate spurious interactions does not give satisfactory
network reconstructions (one of the main problems being that
one does not know, a priori, how many missing and spurious
interactions there are).

Therefore, the first step toward network reconstruction is to
obtain the network reliability RN

A ≡ pBM(A|AO), that is, the prob-
ability that A is the true network given our observation AO (and
our choice of the family of stochastic block models). We obtain
(Materials and Methods)

RN
A = 1

Z

∑
P∈P

h(A; AO, P) exp[−H(P)] , [5]

where

h(A; AO, P) = exp

⎧⎪⎨
⎪⎩
∑
α≤β

⎡
⎢⎣ln

(
rαβ + 1

2 rαβ + 1

)
+ ln

⎛
⎜⎝

(rαβ

lO
αβ

)
( 2 rαβ

lαβ+lO
αβ

)
⎞
⎟⎠
⎤
⎥⎦
⎫⎪⎬
⎪⎭ ,

[6]

lαβ is the number of links in A between groups α and β, and H(P)
and Z are the same as in Eq. 3. Once more, we use the Metropolis
algorithm to estimate RN

A .
Given the network reliability RN

A = pBM(A|AO), the expected
value of a property X

〈X 〉 =
∑

A

X (A) RN
A [7]

over all possible networks A is a better estimate of X (AT ) than
X (AO). We find that in many situations RN

AT 
 RN
AO (Fig. S13 in

SI Appendix), which means that, presented only with an inaccurate
observation AO (and with the knowledge about complex networks
embodied in the stochastic block model family), our approach is
remarkably able to identify that AT is a more likely network than
the observation AO itself. This confirms that, even without know-
ing AT , it is possible to estimate a property X (AT ) better than just
by measuring that property on AO (that is, better than assuming
X (AT ) = X (AO)).

Since summing over all possible networks in Eq. 7 is prohibitive,
we use the approximation 〈X 〉 ≈ X (AR), where AR is the network
that maximizes RN

A (in other words, AR is the maximum a pos-
teriori estimate of A). The network AR is what we call a network
reconstruction, and we claim that X (AR) is, in general, a better esti-
mate of X (AT ) than X (AO). In practice, we build reconstructions
by heuristically maximizing RN

A , starting from AO (Materials and
Methods).

We test our network reconstruction approach by generat-
ing hypothetical observed networks AO from the true test net-
works AT described above. Each observation has a fraction of the
true interactions removed (we call this fraction the observation
error rate), and an identical number of random interactions added.
In Fig. 3 we show the true air transportation network of Eastern
Europe, as well as a hypothetical observation of this network (with
an observation error rate of 20%) and the corresponding recon-
struction. The reconstruction has 13% fewer missing and spurious
interactions than the observation, and qualitatively it appears that
individual node properties (specifically, degree and betweenness
centrality) are also better captured by the reconstruction.

Fig. 3. Reconstruction of the air transportation network of Eastern Europe.
(A) The true air transportation network. The area of each node is proportional
to its betweenness centrality, with Moscow being the most central node in
the network. (B) The observed air transportation network, which we build by
randomly removing 20% of the real links and replacing them by random links.
(C) The reconstructed air transportation network that we obtain, from the
observed network, applying the heuristic reconstruction method described
in the text and methods. For clarity, in B (respectively, C) we do not depict
the correct links, but only (i) missing links in orange, which exist in the true
network but not in the observation (reconstruction) and (ii) spurious links
in blue, which do not exist in the true network but do exist in the obser-
vation (reconstruction). As in A the area of each node is proportional to its
betweenness centrality, with the black circle representing the true between-
ness centrality of each node. The color of each node represents the relative
error in the degree of the node, with respect to the true degree. The observed
network contains 60 missing and 60 spurious links, whereas the reconstruc-
tion only contains 52 of each (a 13% improvement). In general, node degree
and betweenness centrality are also better captured in the reconstruction.
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Fig. 4. Properties of observations and reconstructions of the air transportation network of Eastern Europe. In each case, the observation AO is generated
from the true network AT by randomizing a fraction f of its links. The reconstruction AR is generated from AO as described in the text and methods. For each
property X , we calculate the relative error of the observation (X(AO) − X(AT ))/X(AT ) (black circles) and of the reconstruction (X(AR) − X(AT ))/X(AT ) (white
squares). Symbols represent the mean over 25 repetitions, and the error bars indicate the standard error of the mean. The shaded region corresponds to the
region with smaller relative error (in absolute value) than the observation, so that squares within the shaded region correspond to reconstructions that provide
better network-property estimates than the observation itself. (A–C) Static properties: clustering coefficient (30) (A), modularity (30) (B), assortativity (30) (C).
(D–F) Dynamic properties: transportation congestability, that is, the maximum betweenness centrality in the network (31) (D), synchronizability, that is, the
ratio between the largest eigenvalue and the smallest non-zero eigenvalue of the Laplacian matrix of the network (32) (E), spreading threshold, that is, the
ratio between the first and the second moments of the degree distribution (33) (F).

However, from a systems perspective global network properties
are more relevant than local node-level features. Therefore, the
ultimate goal is to generate network reconstructions whose global
properties are closer to those of the true network than those of the
observations. To quantitatively investigate whether our approach
accomplishes this aim, we calculate six network properties (static
and dynamic) for observations and for the corresponding recon-
structions of the air transportation network of Eastern Europe
and compute the relative error with respect to the true value. As
we show in Fig. 4, the reconstruction consistently improves the
estimates of these properties. Only when the observed network
contains <10% of errors it is better, for a few of the properties,
to use the observed network rather than the reconstruction. We
obtain similar results for the other test networks and other network
properties (Figs. S8–S12 in SI Appendix).

Application to a Protein Interaction Network
As we have discussed before, protein interaction networks are
among the networks that may benefit the most from our approach.
Ultimately, only experiments can prove our results useful; such
experiments are, however, beyond the scope of this work. Never-
theless, here we show how our approach can help in directing the
effort to refine protein interaction data.

We consider the protein interaction network of yeast that Gavin
et al. (12) obtained using affinity purification and mass spectrom-
etry (AP/MS). In AP/MS essays, a “bait” protein is used to detect
“prey” proteins that interact with the bait directly or indirectly.
Since bait and prey play different roles, we limit ourselves to the
set of 991 proteins that are both viable baits and viable prey (10)
(for example, we discard proteins that only appear as prey because
prey-prey interactions cannot possibly be observed). We build a
protein interaction network by connecting all pairs of proteins that
are reported as a bait-prey pair at least once.

¶
From this network,

we obtain the reliability for all pairs of proteins.
We evaluate how successful our algorithm is by considering

those proteins among the 991 in the network that have been used
once, and only once, as bait (some proteins are used as bait in

¶
Note that we do not advocate that this is the most appropriate procedure to analyze the
structure of a protein interaction network (see ref. 10 for a detailed discussion). Rather,
we use this procedure because it enables us to test whether our algorithm can separate
the least reliable from most reliable interactions.

several independent essays). For a pair of these proteins A and B,
a link in the network can represent two distinct situations: (i) The
interaction was observed once (with A as bait and B as prey but
not the other way around, or vice versa); (ii) the interaction was
observed twice (both with A as bait and with B as bait). Since these
experimentally “non-reproducible” and “reproducible” interac-
tions (3,113 and 867 interactions in our network, respectively)
are encoded identically in the network, it is interesting to see if
our algorithm assigns lower reliability to the first and higher to
the latter.

Remarkably, among the 100 interactions with the lowest link
reliability according to our algorithm, only five are experimentally
reproducible. Conversely, among the 100 interactions with the
highest link reliability, as many as 65 are experimentally repro-
ducible. The probabilities of observing by chance such a small
number in the first case and such a large number in the latter case
are p≤ = 3×10−6 and p≥ = 2×10−20, respectively. Our approach
is therefore successfully separating interactions that are likely to
be spurious from those that are likely to be correct, without using
any biophysical or biochemical information.

Discussion
We have shown that our network reconstruction method allows
for a better characterization of network data sets, which will be
particularly useful in data sets that we know contain many inac-
curacies, such as protein interactomes. We have also shown that
our approach reliably identifies missing and spurious interactions
in complex networks, so that we can identify suspect interactions
for further experimental probing.

Interestingly, our method can also guide new discoveries. If a
given interaction between i and j truly exists but our approach
predicts a very low reliability for the interaction (or vice versa), it
means that the function of the interaction is very specific (since
the interaction is rare among nodes that are otherwise similar to
i and j) and, therefore, functionally or evolutionarily important.

Finally, our approach is flexible enough to allow generaliza-
tions in several directions. Arguably the most important of these
is the extension to arbitrarily sophisticated families of models.
In particular, one could use models that are the “product” of
a network model Mn (probably a block model) and an error
model Me that incorporates the relevant error structure (maybe
another block model with non-uniform priors). The flexibility of
our approach, along with its generality and its performance, will
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make it applicable to many areas where network data reliability is
a source of concern.

Materials and Methods
Outline of the Reliability Calculations. Formally, a block model M =
(P, Q) is completely determined by the partition P of nodes into groups and
the matrix Q of probabilities of linkage between groups, so that Eq. 2 in the
main text can be rewritten as

pBM(X = x|AO) = 1
Z

∑
P∈P

∫
[0,1]G

dQ p(X = x|P, Q)×

× pBM(AO|P, Q) p(P, Q) , [8]

where P is the space of all possible partitions of the network into groups, G
is the number of distinct group pairs, and Z is a normalizing constant.

Within the family of stochastic block models, one can evaluate the like-
lihood of each model M because the probability of any two nodes i and j
being connected depends only on the groups to which they belong. We have
that (14)

pBM(AO|P, Q) =
∏
α≤β

Q
lO
αβ

αβ (1 − Qαβ)
rαβ−lO

αβ , [9]

where lO
αβ is the number of links in AO between nodes in groups α and β of P,

and rαβ is the maximum number of such links (that is, the number of pairs of
nodes such that one node is in α and the other is in β).

Note that, among all possible block models, there is at least one whose
likelihood is 1, namely, the block model in which each node is in a differ-
ent block and each Qαβ is 1 or 0 depending on whether the corresponding
nodes are connected or not. This model contributes to p(X = x|AO) much
more than most other models. However, there is only one such model (or
very few), whereas there are many models with, for example, four blocks.
This “entropic” term prevents overfitting of the network by very detailed
(and ultimately uninformative) block models.

Using that p(Aij = 1|P, Q) = Qσiσj
(where σi is the module of node i in

partition P) and assuming no prior knowledge about the models (that is,
p(P, Q) = const.), one can use Eqs. 8 and 9 to obtain Eqs. 3–6 in the main
text.

Metropolis Estimation of Link and Network Reliability. To estimate the
link and network reliabilities given by Eqs. 3 and 5 we use the following pro-
cedure. We start by placing each of the N nodes in a group, which we choose
with uniform probability from a set of N possible groups (that is, there are
as many groups as nodes). In general, some of these N groups will be empty
after the initial node assignment.

At each step we select a random node and attempt to move it to a ran-
domly selected group. This update scheme is appropriate because (i) it results
in an ergodic exploration of the space of possible partitions and (ii) it satisfies
detailed balance (since the probability of choosing a move and its reverse are
identical). To decide whether we accept the move, we calculate the change

ΔH (Eq. 4): If ΔH ≤ 0, the change is automatically accepted; otherwise, the
change is accepted with probability exp(−ΔH).

The sampling procedure starts after an equilibration period, during which
H decreases from an initial value to its equilibrium value. We sample the
partition space by considering S = 104 partitions, each one separated from
the previous one by a number of steps that is large enough for the two parti-
tions to be reasonably uncorrelated (as measured by the mutual information
between partitions).

Because the link and network reliabilities are ensemble averages over inde-
pendent partitions, it is straightforward to parallelize the algorithm so that
the partitions are obtained concurrently. Therefore, given enough computa-
tional resources, the reliabilities can be calculated even for large networks
(probably up to millions of nodes) in relatively short times.

Benchmark Algorithms for the Identification of Missing and Spurious
Interactions. The hierarchical random graph approach is described in detail
in (11). We use the implementation provided by the authors (available at
www.santafe.edu/∼aaronc/hierarchy/hrg_20080819_predictHRG_v1.0.3.tgz),
which we modified slightly to be able to study spurious as well as missing
interactions.

We analyze three local algorithms: common neighbors, degree product,
and Jaccard index (the last two in SI Appendix only). For each of these algo-
rithms, the link “reliability” RL

ij is defined as follows (note that, for these
approaches, the “reliability” is not a probability, but just a score that enables
us to rank node pairs):

• Common neighbors: RL
ij = ‖�i ∩�j‖, where �i is the set of neighbors of node

i, and ‖. . .‖ indicates the number of nodes in a set.
• Degree product: RL

ij = ‖�i‖ × ‖�j‖.

• Jaccard index: RL
ij = ‖�i ∩ �j‖/‖�i ∪ �j‖.

Heuristic Network Reconstruction. The goal of the heuristic network
reconstruction algorithm is to find AR = arg maxA RN

A , where RN
A = p(A|AO)

is the reliability of network A given observation AO. Since exhaustive maxi-
mization of RN

A is not possible, we use the following heuristic method. Start
by evaluating the link reliabilities RL

ij for all pairs of nodes in AO; sort observed

links (AO
ij = 1) by increasing reliability, and observed non-links (AO

ij = 0) by
decreasing reliability. Then choose pairs of link/non-link in order: remove
the link (which has a low reliability) and add the non-link (which has a high
reliability), and accept the change if, and only if, RN

A increases. Repeat this
procedure, going down the lists, until we reject five consecutive attempts to
swap a link/non-link pair. At this point, reevaluate RL

ij and repeat the process.
The algorithm stops when no link swaps are accepted.
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