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Modeling human mobility is critical to address questions in urban planning,
sustainability, public health, and economic development. However, our

understanding and ability to model flows between urban areas are still
incomplete. At one end of the modeling spectrum we have gravity models,
which are easy to interpret but provide modestly accurate predictions of flows.
At the other end, we have machine learning models, with tens of features and
thousands of parameters, which predict mobility more accurately than gravity
models but do not provide clear insights on human behavior. Here, we show
that simple machine-learned, closed-form models of mobility can predict
mobility flows as accurately as complex machine learning models, and extra-
polate better. Moreover, these models are simple and gravity-like, and can be
interpreted similarly to standard gravity models. These models work for dif-
ferent datasets and at different scales, suggesting that they may capture the
fundamental universal features of human mobility.

Accurate models of population mobility within and between muni-
cipalities are critical to address questions in urban planning and
transportation engineering. Additionally, since municipalities are the
main ground on which societies and cultures develop today, such
mobility models are also instrumental in addressing global chal-
lenges in sustainability, public health, and economic development.
Two main factors have driven recent interest in modeling human
mobility patterns'™. First, accurate models of human mobility could
help identify transportation needs®, allocate services and amenities
(shopping, health, parks) more efficiently’, or even understand and
eventually alleviate problems like segregation®, or epidemic
spreading’. But, at the same time, models of human mobility can help
identify the main behavioral components driving people to make
large displacements to, for example, buy a new product, find a new
house, or use physical activity spaces. Better behavioral models can
help us implement more efficient policies to change people’s beha-
vior, rather than urban environments, in favor of more sustainable
attitudes.

Despite these considerations, our understanding of the mobility
flows within and between urban areas is still incomplete. One of the
earliest and most fruitful attempts to model mobility flows between
municipalities is the so-called gravity model'. This model assumes that
mobility flows depend solely on the attractiveness or opportunities of
the origin and destination municipalities (for which population is
typically used as a proxy) and the geographical distance between
them, in a fashion that is mathematically similar to Newton’s law of
gravitation. In its different incarnations and refined versions*'*", the
gravity model provides a simple phenomenological description of a
very complex phenomenon. Because of this, while gravity models are
not without their limitations, they are very often used in urban design,
transportation, or even commercial applications. Recently, machine
learning and deep learning algorithms have been proposed, extending
the ideas underlying gravity models; they incorporate many other
features besides the populations of the origin and destination muni-
cipalities and their distance'® ', Although those sophisticated machine
learning tools are more accurate at predicting flows between urban
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areas, they lack interpretability and analytical tractability, and are hard
to adapt to new contexts.

Given the reasonable success of simple gravity models at
explaining human mobility flows, here we investigate the fundamental
question of whether we really need models that are much more
complex than the gravity law to delve deeper into the essence of urban
mobility. Unlike other behavioral models, gravity mobility models are
phenomenological. Because of their lack of precise theoretical
underpinnings, their predictive ability depends on the exact functional
specification of the dependency of the mobility flows on the model
features; that is, the mathematical dependency on origin and desti-
nation populations and distance. Here, we leverage recent develop-
ments in Bayesian symbolic regression to obtain closed-form,
interpretable models® of mobility from data in a principled and
automatic fashion'*,

We systematically compare the performance at predicting mobi-
lity flows of simple gravity models, complex machine learning and
deep-learning methods, and closed-form, interpretable models
obtained through Bayesian symbolic regression (Fig. 1). We find that
the Bayesian symbolic regression approach yields simple models that
are as accurate as the best machine learning approaches, and extra-
polate better to out-of-sample regions. Our approach is able to learn
accurate models that, like gravity models, solely take into account the
origin and destination populations and the geographical distance
between them. Importantly, the learned models are gravity-like in their
mathematical dependencies on populations and distance. We also
show that closed-form gravity-like models with non-population fea-
tures are similarly predictive. Furthermore, exploration of the rela-
tionship between the contribution of the populations of municipalities
(or other non-population features) and their relative distance reveals
common patterns in all the datasets, which suggests a close to uni-
versal relationship between mobility flows and these variables.

Results

A Bayesian machine scientist learns closed-form mathematical
models from mobility data

We aim to determine whether it is possible to model mobility flows by
means of closed-form mathematical models that are interpretable like

gravity models, and as predictive as (non-interpretable) machine
learning models such as the deep gravity model”. To automatically
learn such closed-form models from data, we use the so-called Baye-
sian machine scientist (BMS)"°. Given a dataset D, the BMS samples
closed-form mathematical models from the posterior distribution
p(M|D), which gives the probability that a given model M is the true
generating model given the data (Methods). The BMS is guaranteed to
asymptotically identify the true generating model, if one exists.
Additionally, when the data are truly generated from a closed-form
model, the BMS has been shown to make quasi-optimal predictions for
unobserved data',

We consider as our main dataset the set of flows T,, between
origin o and destination d municipalities in six states in the USA (New
York, Massachusetts, California, Florida, Washington, and Texas; see
Data). The BMS is fed with D, a set of 1000 flows within each state, and
samples closed-form models from p(M|D) using Markov chain Monte
Carlo™ (MCMC; Methods and Fig. S8). Rather than sampling different
models for each state, the same models are used for all states (see
Methods and ref. 17), which amounts to assuming that mobility pat-
terns arise from general mechanisms that are not state-dependent. In
the spirit of gravity models, however, each state is allowed to have
different parameter values. Model sampling yields an ensemble of
hundreds of different state-independent, closed-form models for the
flows T, such as, for example,
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where m,,4 is the population of the origin/destination municipalities,
d,q is the distance between them, and A, B, C, D, 3, and § are model
parameters. These models are able to make predictions of test flows
(not seen by the BMS during training, and with origins and destinations
also not seen during training) that follow real values over several
orders of magnitude (Figs. 1 and 2M-R). In what follows, we analyze in
more depth this ensemble of models and its predictive abilities, vis-a-
vis gravity models and machine learning models such as the deep
gravity model. Later, we test the ability of the BMS approach to
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Fig. 1| Modeling approaches for mobility flows between test municipalities in
Texas, USA. A Real mobility flows between municipalities (7,4) in the test set in

Texas, US (Methods). For each flow, we consider origin o and destination d features,
such as population m,,4, aggregate statistics about points of interest (POI), and the
distance between them. B Flows predicted by the deep gravity model?, which uses

a total of 39 features from origin and destination. C Flows predicted by the closed-
form, median predictive model (Fig. 6B) identified by the Bayesian machine sci-
entist (BMS; see text). This model only uses the population of origin and destina-
tion, as well as the distance between them.
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Fig. 2 | Model predictions of flows between municipalities. Each panel shows, in
logarithmic scale, the scatter plot of predicted flows between municipalities versus
the corresponding real flows, for different states in the US (columns). Plots show
results for test data for different models (rows): A-F the Deep Gravity model, (G-L)
a Random Forest regressor, (M-R) the most plausible model sampled by the

Bayesian machine scientist, and (S-X) a gravity model in its power-law version.
Supplementary Fig. S1shows scatter plots for the full set of models we consider (see
Methods for a complete description of the models and their parameters). Different
models capture flows at different scales.

produce accurate models at different length scales (namely, to model
flows between fixed-size tiles”, as opposed to municipalities); and of
the models identified for the original six states to make out-of-sample
predictions on six different states (Georgia, lllinois, Michigan, North
Carolina, Ohio, and Pennsylvania).

Different models capture flows at different scales

In order to compare the ability of modeling approaches to describe
mobility data, one needs a model selection criterion. In probabilistic
terms, selecting the best model amounts to selecting the most plau-
sible model, that is, the model that has the highest probability p(M|D)
of being the true generating model given the observed data; or,
equivalently, the model with the shortest description length (Egs.
(3)-(5)). However, this criterion is not always applicable in practice,
because often it is not possible to compute the description length of a
model, as it happens for deep learning and most other machine
learning models.

Alternatively, one can measure performance at certain pre-
dictive tasks', which is the approach typically taken in mobility
modeling studies and that we take here. Specifically, for each of the
six training states (New York, Massachusetts, California, Florida,
Washington, and Texas), we follow ref. 12 and split municipalities into
two sets. Flows between municipalities in the first set comprise the
training set, and flows between municipalities in the second set
comprise the test set (see Tables 1 and 2). To make sure that all states
carry a comparable weight in the training data D, we select the same
number of flows from each state (1000 flows, as we are limited by the

state with the fewest municipalities; Methods). By building the
training and test sets in this way?, all the information about the
municipalities in the test set, their characteristics, and the distances
between them is completely new to the trained algorithm. Addi-
tionally, since the geographic location of municipalities is not avail-
able to any of the algorithms, potential similarities between close
locations in the train and test datasets are not patterns that can be
learned by any of the models.

We compare the closed-form mobility models identified by the
BMS to two alternative approaches. First, we consider gravity models,
in which mobility flows are directly proportional to the product of
masses (that is, populations) at the origin and destination, and inver-
sely proportional to the distance between them. These approaches
include traditional gravity models', as well as the closely related
radiation model*. Second, we consider machine learning approaches
that, besides considering population and distance between munici-
palities, also consider additional characteristics of municipalities, such
as the density of shops, entertainment venues, or educational facilities
(Methods). Specifically, we consider a random forest regression
model® and the deep gravity model™.

From the ensemble of closed-form models sampled by the BMS,
we analyze (Methods): (i) the most plausible (minimum description
length) model found by the BMS; (ii) the median of the ensemble of
models sampled by the BMS (which is the optimal predictor); and (iii)
the single model in the ensemble of sampled models whose predic-
tions are closest to the ensemble median, which we call the median
predictive model.
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Table 1| Train dataset

State Entries Municipalities Flow Distance (Km) Population
Min Max Min Max Min Max

New York 1000 217 26 122,991 1.83 489.80 185 8.80x10°
Massachusetts 1000 75 19 6,6946 2.34 205.51 1029 6.76 x10°
California 1000 260 14 91,267 212 1078.21 237 1.01x10°

Florida 1000 223 7 78,316 2.54 607.50 251 9.50x10°
Washington 1000 107 20 71,796 217 467.16 20 2.29x10°
Texas 1000 177 21 192,660 1.84 975.16 173 2.30x10°

A number of points and municipalities in the train set for each state was obtained from a random sample of 1000 points of the original train fold. We also detail the lowest and largest flow, distance,
and municipality population.

Table 2 | Test dataset

State Entries Municipalities Flow Distance (Km) Population
Min Max Min Max Min Max

New York 5952 249 20 35,063 0.77 531.39 361 212x10°
Massachusetts 1180 75 55,499 2.16 267.24 1,517 2.07x10°
California 1,727 319 41,6696 1.09 1,084.34 129 3.9x10°
Florida 7092 245 79,624 114 875.82 78 4.42x10°
Washington 2083 109 12 54,245 1.48 431.53 487 7.37x10°
Texas 2782 192 3 112,865 2.46 1,196.33 106 1.43x10°

Number of points and municipalities in the test set for each state. We also detail the lowest and largest flow, distance, and municipality population.

In Fig. 2, we show the predicted flows versus the real flows in the
test set (see Supplementary Fig. S1 for results for additional models).
Whereas all models are predictive, we find that different models are
differently capable of describing mobility flows of different orders of
magnitude. For instance, gravity-like models (Fig. 2S-X and Supple-
mentary Figs. S1 and S2) are typically good at capturing the behavior of
large flows, but not of small flows. Indeed, for small flows (less than
around 100 commuters) these approaches tend to underestimate
flows, in some cases by several orders of magnitude, and even predict
flows smaller than 1 person (Supplementary Fig. S2). This is also the
case for the deep gravity model, which again under-predicts small
flows (Figs. 1 and 2A-F). By contrast, neither the random forest nor the
BMS suffers from this caveat, and both capture the whole range of
flows more consistently and without large systematic deviations
(Figs. 1 and 2G-R).

Simple closed-form models are as accurate as the best machine-
learning models on training states

Next, we quantify the performance of the models at the task of pre-
dicting unobserved flows. To that end, and considering the qualitative
results in the previous section, we compute several complementary
performance metrics. First, we consider the common part of com-
muters (CPC; see Methods), which is a usual choice in the mobility
literature®. The CPC measures the overlap between predicted and
observed flows, and can take values from O to 1; the larger the CPC, the
better the predictions. Despite its popularity, this metric favors models
that predict the larger flows well, but overlooks errors in small flows
(Fig. S3A-F). Since mobility flows typically span several orders of
magnitude (Fig. 2), models with the larger CPC are not necessarily the
best models for the whole range of flows.

To have metrics of performance that cover the whole range of
flows, we consider, in addition, and complementary to CPC, the
absolute error, the absolute relative error, and the absolute log ratio
(Methods, Fig. 3, Supplementary Fig. S3). For each of these metrics,
and to avoid the disproportionate influence of singular large errors

(especially for non-relative quantities such as the absolute error), we
always show the whole distribution of error values (as a boxplot), and
use the median value to compare models (Fig. S3, Supplementary
Table S6); the lower the median, the better the performance of the
model. Note that these metrics highlight different aspects of the pre-
diction. Absolute errors are correlated with the magnitude of the flow
we are trying to predict so that errors are typically larger for larger
flows. Because of this, and similar to the CPC, average absolute errors
are very sensitive to the errors in predicting large flows but not to
errors in small flows. For the same reason, median values of the
absolute error typically reflect errors in performance for typical flow
values and do not reflect the ability of a model to predict values in the
whole range of flows.

The absolute relative error and the absolute log-ratio do take into
account the effect of the magnitude of the flow, and therefore are
more informative of the global behavior of a model when the range of
flows spans several orders of magnitude (Fig. S3M-X). An issue with
the relative error is that while it penalizes over-prediction, it does not
penalize under-prediction; in the extreme case in which the predicted
flow equals zero and the real flow is larger than zero, the relative error
is equal to one. As a result, distributions for relative errors in gravity-
like models and the deep gravity model, in which small flows are under-
predicted, are centered around 1 (Supplementary Figs. S2, S3M-R). By
contrast, the absolute log-ratio has the property that over- and under-
prediction are equally penalized (in a logarithmic scale), that is, pre-
dicting the real flow multiplied or divided by the same factor results in
same absolute log-ratio. This metric, therefore, captures the ability of a
model to predict flows in any range of values (Supplementary
Fig. S3S-X).

Using these metrics, we compare the different modeling
approaches (Fig. 3 and Supplementary Fig. S1). The first conclusion
from this comparison is that gravity models, including the radiation
model, are never the best performers; for all states and metrics con-
sidered, there is always at least one other model that performs better.
This is not surprising, since these models are simple and highly
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Fig. 3 | Model performance at predicting test flows between municipalities in
training states. A-H For each model prediction for two representative states
(Florida and Washington; see Fig. S3 for the remaining states), we assess model
performance using four different metrics: A, E Common part of commuters;

B, F Absolute error; C, G Absolute relative error; D, H Absolute log-ratio. The
common part of commuters (CPC) is a global metric. Thus, we have a single value
for each metric. For the other three metrics, we show the median, 50% confidence
interval (box), and 95% confidence interval (whiskers). Triangles (<) indicate the
best-performing model for each metric (largest CPC or lowest median). See
Methods and Text for the definition and discussion of the different metrics.

I-L Summary of performance over test flows in the six training states. The per-
formance ratio is defined with respect to the performance of the gravity model with
power law decaying dependence on the distance (Gravity pow); values larger than 1
correspond, for all metrics (including CPC), to performance above the Gravity pow
model, whereas values smaller than 1 indicate worse performance. Error bars
indicate 95% confidence intervals for the means over states. (See Supplementary
Table S6 for numerical values for all individual states, as well as summary statistics.)
Overall, all models perform similarly in terms of CPC, whereas BMS models and
random forests (and deep gravity for absolute error) perform significantly better in
the other statistics.

stylized, and they have already been shown to make less accurate
predictions than deep gravity models'.

Perhaps more surprisingly, we find that closed-form mathematical
models obtained by the BMS perform, overall, comparably to random
forest models and better than deep gravity models. Indeed, the most
plausible model (BMS Plausible) performs better than deep gravity for
21 of the 24 comparisons we can make (four metrics on each of the six
states), whereas it performs better than random forests in 13/24
comparisons and worse in the remaining 11/24 (Fig. S3). On average,
over the six states, BMS models perform indistinguishably from ran-
dom forests on all quality metrics, and better than deep gravity models
in terms of relative error and log ratio (Fig. 3I1-L). Remarkably, deep
gravity models are only best performers in terms of CPC, and even they
are not significantly better than BMS models or random forests, a
result that is consistent with previous findings®.

When considering how each model performs for flows in specific
ranges (Fig. 4 and Supplementary Fig. S4), we find that BMS models,
similar to random forest models, are particularly good at modeling
flows in the range that is the most common in the data.

Taking into account that both random forest and deep gravity
models use many more features for their predictions (39 features in
total, in contrast to the three features used by gravity models and the
closed-form models identified by the BMS, namely, origin and

destination population, and origin-destination distance), we conclude
that the symbolic regression approach using the BMS yields parsimo-
nious models of human mobility flows between municipalities. Closed-
form models obtained by the BMS also compare well to the alter-
natives in terms of the fairness of their predictions® (Supplementary
Fig. S5). In particular, we find that the random forest and the models
identified by the BMS are, overall, the most consistent models across
states in terms of the fairness of their predictions.

Closed-form models also describe flows at shorter scales

So far, we have analyzed within-state flows between municipalities, of
any size and at any range of distances. However, it may be that the
geographical, economic, and demographic characteristics of smaller
areas become relevant when modeling flows at shorter distances (for
example, within neighborhoods or adjacent towns in large metropo-
litan areas). To elucidate to what extent different modeling approa-
ches can accommodate into such short-distance flows, we adopt the
framework used in ref. 12—we divide the state of New York in small tiles
of 25x25km?, and consider the flows between census tracts within
each tile'. We use 50% of the tiles for training the different models, and
then test the flows between the remaining 50% of the tiles. For this
experiment, we find that regardless of the metric used, closed-form
models identified by the BMS are always more accurate than machine
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Fig. 4 | Performance for different flow ranges. The observed flows between

municipalities span six orders of magnitude and are distributed, over the six states
in our main dataset, as shown by the histogram. We measure the performance of
the different models at predicting flows within each bin of flows: A, CPC; B, absolute

error; C, absolute relative error; D absolute log ratio. The best-performing models
(random forests and those identified by the BMS) tend to fit the data particularly
well (higher CPC and lower error) when flows have the most common magnitudes.

learning and gravity models (Fig. 5). Our results thus indicate that
simple closed-form models that just consider populations of munici-
palities/census tracts and the distances between them provide better
descriptions of mobility flows than complex models that take many
more features into account, and have many more parameters, also for
flows at short distances. This result is consistent with previous work
suggesting than, also at these scales, adding many features to mobility
models barely improves prediction'*.

The identified closed-form models are gravity-like and
generalize well

Our analysis indicates that the BMS is able to find closed-form math-
ematical models that solely consider the populations of the origin and
destination and the geographic distance between them; and that these
models provide predictions of mobility flows that are as accurate as
the most accurate machine learning models. Here, we investigate
whether, besides being predictive, these closed-form models are also
interpretable and insightful, and if they generalize well to other
contexts.

We start by noting, once more, that the BMS samples hundreds of
models and that, overall, they all perform well, which shows that there
are many different models that can describe the data. Such a set of
models is sometimes called a Rashomon set”. Then, the relevant
question is whether these models share any common defining prop-
erties that could explain why they describe mobility flows accurately.
To elucidate this question, we consider a collection of 105 models
sampled by the BMS (see Supplementary Information). We notice that
many of these models contain gravity-like terms, that is, terms that
depend on a product of the origin and destination populations (per-
haps shifted by a certain amount), and inversely on a growing function
of the geographic distance between origin and destination. To quan-
tify this observation, and based on this definition of gravity-like terms,
we manually classified the 105 models into three groups: those having
only gravity-like terms, those having gravity-like terms and some other
(multiplying or additive) terms, and those not having any gravity-like
terms. We find that 17% of the sampled models are purely gravity-like
and 70% contain gravity-like terms as well as other terms; only 13% do
not contain any gravity-like terms at all. This is remarkable because the
BMS has not received any input about the particular shape that models
should take, which suggests that the regularities in the data are well-
described by this general class of models and justifies the historical use
of gravity models.

Next, we analyze in more detail two particularly relevant closed-
form models identified by the BMS (Fig. 6): (i) the most plausible
model, that is, the model that has the highest probability p(M|D) given
the data (or, equivalently, the shortest description length £(M, D))
among all those sampled by the BMS (Methods); (ii) the median

predictive model, that is, the closed-form model whose predictions for
unobserved data are closest to the median prediction of the whole
ensemble of sampled models (Methods). Formally, there are marked
mathematical differences between both models. In particular, the
most plausible model is an exponential model for the flows, while the
median predictive model is a power-law model for the flows. However,
the two models have relevant properties in common. First, both
models are also gravity-like models, like the majority of models sam-
pled by the BMS. Second, origin and destination do not necessarily
play a symmetric role, which allows the model to accommodate non-
symmetric flows in contrast to typical gravity models which do not
allow for this possibility. Indeed, an inspection of the parameters
shows that in some states, such as New York or Texas, flows are much
more symmetric than in others, such as Florida and Massachusetts.
Third, the relative contribution of the mass product with respect to the
geographical distance is quite consistent—in both models, we find a
mathematically equivalent dependency on the ratio (mgm,)/d*, where
e =1/f in the most plausible model (Fig. 6A), and e=a in the median
predictive model (Fig. 6B). We find that, for a given state, a close to 1/8
suggesting that this relationship is to a large extent model-
independent (Fig. 6C). Furthermore, we find that the state-to-state
variability is relatively small since all exponents fall within a close
range, which suggests that reasonable models for mobility flows are
gravity-like models with specific constraints in the relationship
between the contributions of the mass product and the geographical
distance.

To conclude our analysis of the most plausible and median
predictive models, we study to what extent they generalize to out-of-
sample scenarios (Fig. 6D, E). To that end, we use mobility flows
between municipalities in six new states: Georgia, Illinois, Michigan,
North Carolina, Ohio, and Pennsylvania. For each new state, we again
split municipalities in train and test set, and use the train set to fit
model parameters and the test set to measure the models” general-
ization ability. As we show in Fig. 6E, the original models are as
accurate in the new states as in the original states, confirming that
both models generalize well (see Supplementary Fig. S6 for model
parameters in the new states). We also compare the generalization
performance of the BMS models to that of the gravity and random
forest models (Fig. 6D). We find that, at this generalization task, BMS
models perform significantly better than random forests for three
out of four quality metrics, and indistinguishably in the fourth. It is
worth noting that because random forests are non-parametric, in this
case, we cannot refit the parameters of the models to the new states;
rather, we predict each flow in the new states by averaging over the
predictions of the six original random forest models. Doing the same
with BMS models instead of refitting model parameters for the new
states, still leads to flow predictions in the new states that are
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Fig. 5 | Model performance at predicting flows at small distances. We consider
the data used by Simini et al.”> about mobility flows between census tracts within
small geographical (25 x 25 km?) regions in NY state. We evaluate predictions over
test data using the same metrics as in Fig. 3: A Common part of commuters;

10°
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B Absolute error; C Absolute relative error; D Absolute log-ratio. In each panel,
triangles («) indicate the best-performing model according to the corresponding
metric; BMS models are the best-performing in all metrics. See Methods and text,
for a complete description of the metrics, the models, and the data.

significantly more accurate than those of random forest models
(supplementary Fig. S7).

Gravity-like models with non-population features are also highly
predictive

In the preceding sections, we have shown that gravity-like models
based only on population and distance are as predictive as complex
machine learning models with population and non-population fea-
tures, and extrapolate better. However, previous research suggests
that, in general, non-population features add predictive power to
models'?, which is consistent with our current understanding of the
diverse factors that drive human mobility.

To clarify this apparent paradox, we end by investigating closed-
form models with population and non-population features (Fig. 7). We
start by noting that, at the level of municipalities and in contrast to
smaller scales, all features are highly correlated (Fig. 7A-C), which
explains why population and distance, alone, already yield highly
predictive models. In any case, we feed the BMS with the 39 features
used by deep gravity and random forest models, to obtain new closed-
form models with those features. We find that most of the features are
rarely used in the sampled expressions, but a few are (in particular, the
number of food points at the destination, and the main road lines at
origin and destination).

The most plausible model identified by the BMS is, in this case,

Cy(c3t (crF gt My)(cy t M, +R,)) exp (c’;)
da

(03

logTog= |t

where Fy is the number of food points at the destination, M, is the
length of main road lines at the origin and destination, respectively,
and R, is the number of retail points at the origin. We find that this
model is often slightly more predictive than the population-only
gravity-like models discussed in the previous sections, although the
differences are not statistically significant. This is true for the six
original states (Fig. 7C-F) as well as for the six new states not seen by
the BMS (Fig. 7G-J). Last but not least, we note that this model is also
gravity-like in that it contains a term with the product of an origin-only
factor and a destination-only factor, divided by an increasing function
of the distance. Thus, formally, this model is similar to population-only
models in previous sections.

Discussion

Understanding human mobility is critical to address questions in urban
planning and transportation, as well as global challenges in sustain-
ability, public health, and economic development. Traditionally,
mobility flows have been modeled using simple gravity models, which
are conceptually simple and easy to interpret, but have limited

predictive power. Recently, deep learning models have been proposed
as an alternative; whereas these models are consistently and sig-
nificantly more predictive than gravity models, they are not inter-
pretable and provide little insight into human behavior. Here, we have
shown that automated equation discovery approaches lead to parsi-
monious closed-form models that combine the most desirable aspects
of both approaches—the simplicity of gravity models and predictive
power as high as the most accurate machine learning models and even
higher when it comes to generalizing.

We argue that two factors contribute to the success of the BMS at
identifying parsimonious models. First, the probabilistic approach
underlying the BMS deals quasi-optimally with sparse and noisy data'®.
Mobility datasets are available nowadays, and more will be available in
the future?, but the number of municipalities in a state or even a
country is limited, so the resulting training sets are constrained by
definition. This is in contrast with LLMs or other areas where deep
learning excels, and where the size of training sets can grow virtually
without limits. Second, automated equation discovery works best
when the data can be described by relatively simple models. This
seems to be the case in the context of mobility. Indeed, the models we
identified are gravity-like in that they are increasing functions of a
certain product of populations of origin and destination, and
decreasing functions of the distance between them. While the ratio
between the population and the distance terms is, in principle, model
and data-dependent, in the datasets we explore the ratio is roughly
constant and dataset-independent.

Individual mobility depends critically on the urban environment,
personal preferences, commuting patterns, and accessibility to
transportation and amenities. Thus, modeling mobility at an indivi-
dual or small spatial scale might require more complicated models
that account for routes, the purpose of the trip, points of interest, or
even the demographic traits of individuals'>***, However, our results
show that by aggregating mobility at a larger spatial scale, the
movements of millions of people can be described parsimoniously by
simple fully explainable models that do not depend on the micro-
scopic characteristics of the origin, destination, or route taken. This
is because the randomness and variability inherent in individual
behaviors tend to cancel out when looked at collectively, revealing
underlying trends and movements that are driven by the shared
needs of large populations, and the structure of the built environ-
ment. Our results show, therefore, that the aggregated flows in
human mobility can be seen as an emergent and universal property of
the complex system of individual movements. More broadly, our
results showcase the potential of using machine scientists'**** to
automate the process of finding similar phenomenological closed-
form models from data; and to use these models to gain insight into
the relevant variables and mechanisms to describe other complex
phenomena.
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Fig. 6 | Closed-form models for mobility flows. We ran the Bayesian machine points are obtained from the median predictive model. D Relative improvement of
scientist (BMS) with a training set of 1000 points and three features: origin and each model and metric for the out-of-sample states. We average the relative

destination populations and the distance between them. We used 5 independent improvement across the out-of-sample-states. As in Fig. 3I-L, higher values of the
Markov chains of 12,000 Monte Carlo steps each. A Minimum description length performance ratio are always better (also for CPC). BMS models perform sig-
model (Methods) for the logarithm of the data, where d is the inter-municipality nificantly better than all other algorithms in three out of four metrics. E We fit the
distance, m, is the origin population, and m, is the destination population. In the ~ BMS Plausible and BMS Predictive model parameters for the out-of-sample states.
table, we show the fitting parameters for each state of the training data. B Median =~ We compute the metric using the observed values from the test set and the pre-
predictive model (Methods) for the logarithm of the data. As before, d is the inter-  dicted values of the model using the corresponding set of fitted parameters for
municipality distance, m, is the origin population, and m, is the destination each state. Filled bars show the training states and empty bars show the out-of-
population. In the table, we show the fitting parameters for each state of the sample states. Performance in out-of-sample states is similar to training states,
training data. C Ratio between the distance exponent and the population exponent.  confirming that BMS models generalize well.

Round-filled points are obtained from the most plausible model, and empty square
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Methods daily movement of millions of mobile phone devices in the US (see ref.
Mobility data between municipalities in the US 26 for a full description of the data). The dataset contains the geo-

We collected weekly flows between United States census tracts for a  graphical identifier (GEO ID) for both origin and destination census
week in January 2019 (2019/01/07 to 2019/01/13) and a week in March  tracts as well as their corresponding geographical coordinates, the
2019 (2019/03/04 to 2019/03/9)*. The data consist of anonymous estimated number of visitors detected by SafeGraph, and the esti-
mobile data trajectories extracted from location-based service apps, mated population flows inferred from the number of visitors. The
regardless of the transportation method, and corresponding to the datasets are available at GeoDS.
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Fig. 7 | Closed-form models with non-population features. A Spearman’s rank
correlation among all pairs of features (distance, 19 origin features, and 19 desti-
nation features), for all pairs of municipalities in the training states: New York,
Massachusetts, California, Florida, Washington, and Texas. B, C Population of the
destination versus: B number of food points at the destination; C main road lines at
the destination. In both cases, the straight line represents a linear relationship; this
is not a fit, and it is provided as a guide to the eye. D-G Performance ratio of models
with respect to the gravity power-law model for the training states. As in Fig. 3, the
performance ratio is defined so that values larger than 1 correspond, for all metrics

(including CPC), to performance above the gravity power-law model, whereas
values smaller than 1 indicate worse performance. Error bars indicate 95% con-
fidence intervals for the means over states. The model labeled BMS 39 Feat corre-
sponds to the most plausible model obtained by the BMS when trained with non-
population features (Eq. (2)). H-K Same as D-G, but for out-of-sample states. The
testing procedure is as in Fig. 6. In general, the BMS 39 Feat model performs slightly
better than the most plausible population-only model, but the differences are not
statistically significant.

The dataset was validated against ACS commuting flows and other
datasets in the original publication by Kang et al., where it was found
that there is a remarkable agreement (correlation above 90%) between
the dataset and other administrative and commercial datasets.
SafeGraph data has also been validated and found to describe quite
accurately flows and visits in the USA”. All of these validations are
necessary because of the importance and challenges of getting reliable
mobility data®>*5%,

Data processing. In order to obtain the flows between municipalities
from the data using census tract data, we first match municipalities
(cities, towns and villages) with their corresponding census tracts.
Then, the total flow between two municipalities A and B is calculated as
the aggregate of flows between the set of census tracts municipality A
is comprised of and the set municipality B is comprised of.

Specifically, we consider mobility datasets within six states in the
US: New York, Massachusetts, California, Florida, Washington, and
Texas for the training process. For validation, we also consider the
following out-of-sample states: Georgia, lllinois, Michigan, North Car-
olina, Ohio, and Pennsylvania (See Supplementary Tables S1-S3). For
each state, our data consist of the origin-destination municipality
names, the flow, the distance, and the origin-destination populations
and POI categories. We only consider municipalities with a non-zero
population and pairs of municipalities with non-zero flow; we do not
consider flows within the same municipality (see Supplementary
Table S4 for details).

Information about municipalities and census tracts. We obtained
shapefiles containing the geographical coordinates of the polygons
delimiting census tracts and municipalities from United States Census
Bureau. We also retrieved population data of each municipality using
the GEO ID Data Commons.

Finally, using a local copy of Open Street Map (OSM) with
Overpass API, we retrieved information about Points of Interest (POI)
in each census tract (see Supplemantary Information and supple-
mentary Table S5). We selected 18 categories of OSM elements that
represent geographical, demographic and socio-economic features of
the different municipalities.

Construction of train and test datasets. To speed up the training
process, we train the models with the same random sample of 1000
points of the training fold except for the Deep Gravity model for which
we have to use a lager number of data points for training.

Economic classification of municipalities. We retrieve the median
income per capita of each municipality and state as of 2020 from Data
Commons. Then, we classify each municipality with the label rich if the
median income of the municipality is above the median income of the
state, or poor if the median income per capita of the municipality is
below the median income of the state.

Mobility data at small scales from Simini et al.””

The code available for the Deep Gravity model provides data at the
level of census tracts for the New York State area. Mobility flows are
obtained from the same dataset. In order to obtain the predictions of

the Deep Gravity model for each individual trip and also the same
dataset, we run the program and save, for each trip, the corresponding
tile, the real value, the prediction and the variables. We store the train
and test sets for the comparison with other methods.

Bayesian machine scientist

The BMS is a Bayesian approach to symbolic regression that estimates
the plausibility of a closed-form mathematical model M given the
observed data D as the posterior probability p(M|D). Without loss of
generality, this posterior can be written'

exp[—£L(M, D))

pM\D)= >

3)

where £(M, D) is the description length® of the model (and the data),
and Z=3",, exp[—L(M',D)| =p(D) is the evidence. Here, we assume
that the mobility flows are generated by the models M as

log Toa=M(m,, mdrdod; 0)+e,

where 6 are model parameters, and € is an unbiased, Gaussian obser-
vational noise. Note that we model the logarithm of the flows rather
than the flows themselves because, with flows spanning five orders of
magnitude, the assumption of additive noise only makes sense for the
logarithm. In this case, and within standard approximations'®®, the
description length can be approximated as

B(M, D)
2

LM, D)= —logpM), 4)

where B(M, D) is the Bayesian information criterion® (which is
straightforward to calculate from the data), and p(M) is a suitable prior
distribution. Here, exactly as in ref. 16, we set p(m) to be the maximum
entropy distribution over models compatible with the frequencies of
each elementary function observed in an empirical corpus of mathe-
matical expressions. Note, in particular, that this prior does not give
any preference to gravity-like models.

In this work, our goal is to simultaneously model flows from six
different states in the US (that is, six different datasets). To this end, we
use a multi-dataset approach” which consists in finding a unique
closed-form model for multiple datasets. For each dataset, we allow
model parameters to take different values”. For a single dataset
D ={(y; X}, where {y} is the set of observations and {x;} is the set of
feature values associated to each observation, the description length
of a closed-form model M and the data is given by Eq. (4). In the
case in which our data comprises K independent datasets
D={Dy, k=1...,K}={{0}, x})}, ..., {0}, x{)}} that we want to model
using a single model M, the description length is”

1
L(M,D)= izijuw, D)~ logp(M). 5)

The BMS represents closed-form models as labeled trees and uses
Markov chain Monte Carlo (MCMC) to explore the space of closed-
form mathematical models by sampling from the posterior
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distribution p(M|D) « exp(—L). In this work, we consider models for
flows with: i) three independent variables (populations at origin and
destination and geographical distance) and up to six parameters and II)
39 independent variables and up to 39 parameters.

The ensemble of sampled models allows to make predictions on
the test set using three different approaches:

1. The most plausible model. This is the model with the shortest
description length that the BMS is able to find.

2. The ensemble of models. Ensemble predictions are the optimal
predictions since they correspond to fully integrating over
model space. We estimate this integral by averaging over the
predictions made by each one for the models we sample. Spe-
cifically, we perform five independent realizations of 12,000
MCMC steps (see supplementary Fig. S8 for typical traces of the
MCMC sampling). We then collect a model every 100 steps
within the last 2000 steps of the Markov chain to obtain an
ensemble of 100 models.

3. The median predictive model. This is the model within the
ensemble whose predictions are closest to the predictions of the
ensemble as a whole.

Benchmark models

Gravity model. We consider the gravity model in its simplest form' in
which the observed flow T;; between municipalities (i, /) is a function of
the populations m; and m; of the municipalities and the distance dj
between them

Cm[' mj

T, = .
14 f(dy) (6)

Here C is a scaling parameter and f(d) is a function of the distance.
Specifically, we consider two possible choices for f(d): i) a power-law
Joow(d) = d*; and ii) an exponential-law f ., (d) = exp(ad). In both cases,
the parameter a is obtained by fitting the model to the data in the
training set. Because flows span several orders of magnitude, and for
the same reasons outlined above for BMS models, we find that training
the model on the logarithm of the flows, rather than the flows
themselves, leads to more predictive models. Therefore, all results
reported here for gravity models correspond to this approach.

Radiation model. We consider the original formulation of model*, in
which flow T; is modeled as the the total outflow of an origin muni-
cipality T; times the probability of going from i to j. This probability
depends on the populations of the origin (m;) and destination(m), as
well as the populations of the municipalities within a radius dj; from the
municipality at the origin:

m; m;

T.=T.p. .=T, ,
i 1iPiny = F (m; + ) (m; +m; +s;)

@)

where Sij = Zk¢iJmk( YV k dik < dy)

Recent works introduce modifications to this model for finite-size
systems and in order to avoid border effects**>* (See Supplementary
Fig. S9). However, we find that these models do not outperform the
original formulation.

Random forest. We implement a random forest regressor®® with
1000 estimators. As input data we use a total of 39 features for each
origin-destination pair which include: distance, population at origin
and destination, and 36 geographical and socio-economic features of
the origin and destination areas (see Data and Supplementary
Table S5).

Deep Gravity. Taking as a baseline the algorithm developed in ref. 12,
we modified the model to predict flows between municipalities rather

than between small geographic regions resulting from tessellation.
The major difference with the original model is that municipalities are
now the smallest geographic unit, allowing us to compare with the
models evaluated in this study. In all other aspects (features used, pre-
processing of data, an model training) the model remains the same
(see Supplementary Text for details, including all parameter values and
specific changes in the original code). The modified version of the code
can be consulted and downloaded from Symbolic_mobility BMS/
DeepGravity.

Metrics
Common part of commuters (CPC). It is a widely used metric to
analyze the performance of mobility models that is defined as

_ 2y min(Ty, )
ST+ Ty

where Ty is the predicted value of the flow from i toj and T,j is the
observed flow. The maximum value of the CPC is 1 if there is a
complete agreement between the real data and predictions and it
decreases to O if all predictions for any flow are equal to zero. Note
that the CPC is biased toward models that make accurate predic-
tions for large flows, since smaller flows have marginal contribu-
tions to the sums. This is especially critical in mobility data
where flows can span several orders of magnitude (see
Tables 1 and 2).

CPC (8)

Absolute error. It measures the distance between the real and pre-
dicted data

Ej=IT;— Tyl . ©

i = | i
Note that absolute error scales with the size of the flows, so that the
average absolute error is biased towards the errors of average flows.

For this reason, we represent the whole distribution.

Relative error. It measures the difference between real and predicted
flows relative to the observed value of the flow:

*

T;—T;

T 10)

y

i

Note that, while over-predicting flows is penalized by the relative error,
under-predicting flows is not, since predicting a zero value for a non-
zero flow results in €;;= 1. Because this can bias average relative errors,
we plot the whole distribution.

Absolute log-ratio. It measures the difference in the logarithms of
predicted and real flows:

LR; =|log

Ty
gl 11
= (1

ij

Note that for a perfect prediction this metric is equal to zero. Impor-
tantly this metric penalizes both over- and under-predictions equally.
For instance, a prediction of a flow twice as large T;= 2T:~j has
LR; = log2, and a prediction T;;=T;/2 has LR; = log 2 as well.

Proportional demographic parity. The goal of this metric is to
quantify the fairness of a model when predicting flows between dif-
ferent demographic or socio-economic groups {g € G}. To do so, it
quantifies to what extent the errors of the predictions for flows across
pairs of groups {f; = (g, 8)) € G?=GxG) are equally distributed for
all pairs of (different) groups. Consider that [ is the median error of all
flows, and tis a percentile window around the median (0 < 7<100). For
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a pair of flow groups (f3, f>), PDP estimate the difference between their
error distributions as

PDPfl,fZZ’P(i—%S[Si+ %fl) _p<]_§ <I<]+ §P2>

where P(- |f}) is the probability that a prediction of a flow in flow group
fihasanerror [such that/ —Z <i<l+ 3.
To get an overall estimate, then PDP uses a weighted average”

12)

PDP= Z wy,,PDP;p,

£, heG? f#h 13)
where the weight wy , =5, 2Ny /(Ny +Ny) enhances the relative con-
tribution of small groups of flows. Note that our approach to measure
PDP is a generalization of that used in ref. 21, where, instead of per-
centile windows, the authors consider 7 to be a standard deviation
around the mean. However, because error distributions are not Gaus-
sian in general (see the explanation for the different error metrics), we
use a more general definition applicable to any distribution.

In our analysis, we consider two groups of municipalities:
above (rich) and below (poor) the median income per capita
(see Data). Therefore we have four different flow
groups G = {poor — poor, rich — poor, poor — rich, rich — rich}.

Data availability

All data are available as described in the Methods section. The source
dataset is available at GeoDS and is part of the publication Kang et al.*.
The datasets used to train the models and for the evaluation of the
Deep Gravity model are available at Github”.

Code availability

The code for the BMS is available from https://bitbucket.org/rguimera/
machine-scientist. The BMS implementation to obtain mobility models
and the Deep Gravity version is available at Github®.
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