Sustainable Production and Consumption 30 (2022) 596-607

journal homepage: www.elsevier.com/locate/spc

Contents lists available at ScienceDirect

Sustainable Production and Consumption

Automatic modeling of socioeconomic drivers of energy consumption
and pollution using Bayesian symbolic regression

Daniel Vazquez?, Roger Guimera®<, Marta Sales-Pardo”* Gonzalo Guillén-Gosalbez*

aDepartment of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
b Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Catalonia, Spain

€ICREA, Barcelona 08010, Catalonia, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 22 October 2021

Revised 1 December 2021
Accepted 23 December 2021
Available online 27 December 2021

Predicting countries’ energy consumption and pollution levels precisely from socioeconomic drivers will
be essential to support sustainable policy-making in an effective manner. Current predictive models, like
the widely used STIRPAT equation, are based on rigid mathematical expressions that assume constant
elasticities. Using a Bayesian approach to symbolic regression, here we explore a vast amount of suitable

mathematical expressions to model the link between energy-related impacts and socioeconomic drivers.
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problems.

We find closed-form analytical expressions that outperform the well-established STIRPAT equation and
whose mathematical structure challenges the assumption of constant elasticities adopted in the literature.
Our work unfolds new avenues to apply machine learning algorithms to derive analytical expressions
from data in environmental studies, which could help find better models and solutions in energy-related
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1. Introduction

Today’s high living standards rely on the global trade, produc-
tion, and use of resources, which results in a range of environmen-
tal impacts that could challenge the stability of the Earth system.
Notably, energy consumption reached 583.9 EJ in 2020 (BP, 2020),
leading to high levels of anthropogenic CO, emissions (31.5 Gt
(IEA, 2021)) due to the heavy reliance on fossil energy resources.
The COVID-19 pandemic has reduced these consumption levels, yet
the expected increase in fossil fuels consumption for 2021 would
reverse practically all the reductions achieved in 2020 (IEA, 2021).
There is, therefore, a clear need to curb emissions by shifting to
more sustainable energy sources and reducing the current high en-
ergy demand. This will require deepening our knowledge on the
specific forces driving these energy-related environmental stressors
so more effective policies can be developed.

The term “driver” refers to a range of factors that can ex-
plain the environmental footprint of a geographical or political
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unit. Several analytical tools were developed to identify impact
drivers based on closed-form analytical expressions linking impacts
to driving forces. Such formulas are calibrated with data and then
used to predict how changes in the drivers affect changes in the
impact values.

In a very influential work, Ehrlich and Holdren (1971) proposed
the IPAT identity, which links the environmental impact with the
population, affluence , and implemented technological levels. Im-
pact here may refer to CO, emissions or any other pressure ex-
erted on the environment. The identity assumes a multiplicative
effect of the drivers that influence the impact, leading to the ex-
pression, I = PAT, which gives name to the identity. The IPAT iden-
tity has been mainly used as an accounting equation to compute
the implemented technology level from a known population, afflu-
ence, and environmental impact values.

A caveat of the IPAT identity is that it cannot account for non-
monotonic or non-proportional effects of the driving forces, which
motivated the development of an alternative methodology. Notably,
York et al. (2003) put forward a stochastic version of the IPAT,
termed STIRPAT, which relates impacts to drivers using the concept
of ecological elasticity. This model allows for a more in-depth anal-
ysis of the impact drivers, providing a quantitative framework to
relate changes in inputs (drivers) to changes in outputs (impacts)
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Nomenclature

Abbreviations & sets

ANN Artificial neural network
BMS Bayesian machine scientist
GHG Greenhouse gas

] {j: Set of drivers to study}

LASSO  Least absolute shrinkage and selection operator
MCMC Markov chain Monte Carlo

MINLP Mixed-integer nonlinear programming

ML Machine learning

N {n: Set of data points}

SVM Support vector machine

Variables & parameters

AP Active population. Percentage of population with
age comprehended between 15 and 64 years (%)

AT Average temperature (K)

BIC Bayesian information criterion

CDE CO, emissions (kg CO,)

CVE Cross-validation error

DP Population density. Number of habitants per square
kilometer (inhabitants/km?)

EC Energy consumption (T])

GDP Gross domestic product per capita (2020$/inhabi-
tant)

ME CH,4 emissions (kg CHy)

MSE Mean squared error

NOE N,O emissions (kg N,0)

R? Coefficient of determination

TP Total population (inhabitants)

UR Urbanization rate. Percentage of population that
lives in an urban area (%)

k Number of parameters in the surrogate model

y Mean of the observed values

Vn Observed value for data point n

ynModel - pradicted value using the surrogate model for data

point n

based on a linear relationship in logarithmic space. The STIRPAT
model has been widely used in the literature to study multi-
ple environmental burdens, ranging from CO, (Fan et al., 2006;
Libao et al., 2017; Pao et al., 2012; Zhu et al., 2020), N0 and CH4
emissions (Le and Nguyen, 2020), and other greenhouse gas (GHG)
emissions (Anser, 2019; Chekouri et al., 2020; Nosheen et al.,
2020; Singh and Mukherjee, 2019), to water footprint (Zhao et al.,
2014), water pollution (Zhang et al., 2017), phosphorus footprint
(Jiang et al., 2019), ecological footprint (Yang et al., 2021), and en-
ergy consumption (Ibrahim et al., 2017; Lin et al., 2020; Ma et al.,
2013). For example, these models showed that affluence and pop-
ulation are the main drivers of CO, emissions (York et al., 2003).

In recent years, the widespread use of machine learning (ML)
in many scientific fields has unfolded new avenues for extracting
knowledge from data by building predictive models. The STIRPAT
equation is an example of an empirical relationship - linking an-
thropogenic drivers to environmental impacts—-, which was likely
found by manual procedures (York et al., 2003). By contrast, here
we are interested in generating plausible mathematical expressions
describing impact drivers in an automated manner without assum-
ing any ad hoc fixed canonical formalism.

ML algorithms such as artificial neural networks (ANN) and
Gaussian processes have recently become prevalent regression
tools (Jean et al., 2016; Lee et al., 2018; Schweidtmann and Mit-
sos, 2019). Support vector machines (SVM) have already been used
to predict CO, emissions (Saleh et al., 2016) from electricity con-
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Fig. 1. Representation of the equation f(x;, X2, X3) = ax; — (X, +X3) using a binary
tree.

sumption and the available technology in Indonesia, while ran-
dom forest algorithms were applied to predict agricultural N,O
emissions (Saha et al., 2021) from intensively managed cropping
systems using ammonium, nitrate and clay content in the soil
as predictive variables. More classical ML methodologies, such as
Least Absolute Shrinkage and Selection Operator (LASSO) regres-
sion and feed-forward ANN, have also been applied to predict en-
vironmental impacts. Hamrani et al. (2020) compared different ML
approaches to predict GHG emissions from agricultural soils, us-
ing various inputs such as the air and ground temperature and
wind speed. Hempel et al. (2020) predicted methane emissions
of a dairy building with natural ventilation in Northern Germany
using ANN, linear regression, and other ML methodologies and
considering as predictive variables (or features) the temperature,
wind speed, and direction. Romeiko et al. (2020) applied Gradient
Boosting Regression Trees, ANN, and SVM to predict global warm-
ing and eutrophication impacts of corn production from the tem-
perature, precipitation, soil organic content, soil texture, applica-
tion rates of both nitrogen and phosphorus fertilizers, and farming
practices. Nguyen et al. (2021) used random forests to create land
use maps, which are useful to monitor and assess land-use change.
Zhang et al. (2021) used an ANN to enhance the prediction of en-
ergy demand and its price during the COVID-19 pandemic.

The ML regression models above assume a fixed mathemat-
ical structure encoded by a sequence of hyper-parameters -e.g.,
the number of neurons per layer and the number of layers in
an ANN or the number of explanatory variables in a multi-linear
regression- which control the learning process and are fixed be-
forehand. These approaches then seek the model parameters that
provide the best fit to observed data. Similar to these ML ap-
proaches, the STIRPAT model (York et al., 2003) also relies on a
fixed mathematical structure, i.e., a log-linear equation. However,
assuming such a limited pre-defined structure may limit our abil-
ity to explain observed data precisely.

The problem of identifying governing principles and equations
from data has recently emerged as an active area of research in
machine learning. In mathematical terms, the symbolic regres-
sion problem (also called sparse regression and equation discovery)
aims at finding both the structure of a model and its parameters
from a set of observations. Symbolic regression is often addressed
by representing mathematical expressions using a symbolic tree,
as shown in Fig. 1. In these trees, leaf nodes correspond to ei-
ther a variable or a constant, while all parent nodes correspond
to mathematical operators. An algorithm can then be coupled with
the symbolic tree representation to navigate through the space of
feasible expressions and identify the one that best fits the data.

Recent years have witnessed an increasing interest in symbolic
regression (Cozad and Sahinidis, 2018; Neumann et al., 2020). Un-
like other ML methods, symbolic regression has the advantage of
providing an explicit closed-form equation that can be manip-
ulated algebraically, differentiated, and analyzed more in-depth.
ANNSs also lead to mathematical expressions, yet they combine ac-
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tivation functions and weights in a single formalism that is hard to
interpret.

Various symbolic regression approaches have been put forward
typically with the sole aim of finding a unique best mathemati-
cal representation of the data. These approaches mainly differ in
whether the optimization approach used to explore the space of
symbolic trees is stochastic or deterministic. Stochastic methods,
such as those using genetic algorithms to explore the search space
(Zegklitz and Posik, 2021), tend to be faster and easier to imple-
ment, yet they cannot guarantee convergence to the global opti-
mum within an epsilon tolerance unless the algorithm is run for
an infinite time. By contrast, deterministic methods often require
more significant CPU times but can provide a bound on the min-
imum error that could be attained with the best model. More re-
cently, deterministic optimization was applied to the symbolic re-
gression problem by formulating a mixed-integer nonlinear pro-
gram (MINLP) (Cozad and Sahinidis, 2018). This MINLP can be
solved to local optimality by standard MINLP methods , such as
the nonlinear branch and bound (Dakin, 1965) and outer approxi-
mation algorithms (Duran and Grossmann, 1986), or to global op-
timality using deterministic global optimization algorithms.

In a recent article, some of us have developed an alternative
approach to symbolic regression that is rooted in probability the-
ory and allows computing the plausibility of each mathematical
expression given the observed data, which we call the Bayesian
Machine Scientist (BMS) (Guimera et al., 2020a). The BMS uses a
stochastic Markov chain Monte Carlo (MCMC) algorithm to explore
the space of possible mathematical expressions according to their
plausibility in an ergodic manner. The plausibility of each model
is obtained as the description length of the model and the data,
which can be computed from the Bayesian information criterion
(BIC) and the logarithm of the prior over the expressions consid-
ered. The prior, which controls for the structural complexity of
the mathematical model and therefore acts as a structural regular-
izer, was obtained from a corpus of 4080 mathematical expressions
found in Wikipedia. The BMS was shown to outperform state-of-
the-art symbolic regression approaches as well as standard ML re-
gression models, such as Gaussian processes, at fitting data and
predicting out-of-sample data.

To the best of our knowledge, symbolic regression has never
been applied to identify energy consumption and pollution drivers,
which are still studied mainly using the STIRPAT method based on
a fixed, known mathematical structure. To go beyond these ap-
proaches, here we use for the first time a Bayesian symbolic re-
gression approach (i.e., the BMS) to identify environmental impact
drivers from a set of socioeconomic descriptors. We find that the
BMS leads to expressions that outperform the STIRPAT equation
at explaining the variance of data. Moreover, our results challenge
the assumption of constant elasticities, widely adopted in STIRPAT
models, by which a constant increment in one driver always results
in a constant change in impact. On the downside, the symbolic re-
gression algorithm provides more complex analytical expressions
(compared to the STIRPAT model), although the level of complexity
can still be controlled through an appropriate tuning of the algo-
rithm

The paper is structured as follows. First, we present the prob-
lem statement and the methodology. Then, we introduce the case
study. Finally, we discuss the results and draw some conclusions.

2. Problem statement

Our goal is to find a mathematical expression to predict en-
vironmental impacts from a set of socioeconomic drivers to be
identified from a pool of variables. Hence, the data available com-
prise a series of potential drivers and environmental impacts of a
set of countries at different years. These input data, i.e., indepen-
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dent variables, have dimensions x x y, where x is the number of
pairs country-year studied and y the number of potential drivers.
The output data, i.e., dependent variables, has dimensions x x z,
where z is the number of environmental impacts studied. We clar-
ify here that impact can refer to (i) a direct damage to the envi-
ronment; (ii) a set of emissions ultimately responsible for an im-
pact, or (iii) the energy consumption level, ultimately leading to
emissions and, hence, to impacts. The objective is to study the in-
fluence of socio-economical drivers on environmental impacts. For
example, we might be interested in predicting the CO, emissions
of a country from the population, affluence, and other socioeco-
nomic descriptors.

3. Methodology

Fig. 2 shows a schematic representation of the overall method-
ology. We train two surrogate models, the BMS and the STIR-
PAT, to predict four environmental impacts using six socioeconomic
drivers. For the obtained models, we then compute the elasticities,
that is, the percentage change of the output in response to a per-
centage change in the inputs.

3.1. Data

We obtained data from the World Data Bank and the EORA
database (Lenzen et al., 2013). We pre-processed the data from
EORA to use consumption-based impacts in the calculations (rather
than production-based), as discussed in Appendix A.

We study the effects of six environmental drivers, i.e., total pop-
ulation, GDP per capita, active population, population density, ur-
banization rate, and climate, on four environmental impact cate-
gories: CO, emissions(CDE), energy consumption(EC), N,O emis-
sions(NOE), and CH4 emissions(ME) at the country level, with
data spanning 25 years, from 1990 to 2015. Energy consump-
tion includes power, fuels, and heating. CO, emissions are, there-
fore, strongly connected to energy consumption, as energy sources
are mostly fossil-based. CH,4 is the second most important GHG
emission in terms of global anthropogenic contribution to climate
change (Marmier and Schosger, 2020). Approximately 36.9% of the
world’s anthropogenic CH4 emissions are linked to natural gas and
petroleum energy systems (IEA, 2020). For completeness, we also
consider the third most important GHG emission, N,O. Although
N,O is mainly emitted in agriculture, approximately 23.3% of the
anthropogenic N,O emissions are linked to the burning of biomass
and to fossil fuels use and industrial processes (Tian et al., 2020).

Fig. 3 shows a breakdown of GHG emissions depending on the
source for 2018, as presented in PRIMAP-hist (Giitschow et al.,
2016).

Following the notation in EORA, CO, emissions correspond to
the entry “Total CO, emissions from EDGAR”, in kg. We obtain the
energy consumption by adding the following terms: “Energy Us-
age, Coal”, “Energy Usage, Natural Gas”, “Energy Usage, Petroleum”,
“Energy Usage, Nuclear Electricity”, “Energy Usage, Hydroelectric
Electricity”, “Energy Usage, Geothermal Electricity”, “Energy Us-
age, Wind Electricity”, “Energy Usage, Solar, Tide and Wave Elec-
tricity”, and “Energy Usage, Biomass and Waste Electricity”, in T].
N,O emissions correspond to the category “GHG emissions from
PRIMAPHIST, N0, total excluding LULUCF” in kg. Finally, CH, emis-
sions correspond to the entry “GHG emissions from PRIMAPHIST,
CHy, total excluding LULUCF”.

Due to data gaps, we consider only the pairs country-year with
complete information for all the drivers studied. Overall, our data
set comprises 4183 data points for CDE, 4184 data points for EC,
and 4185 points for both NOE and ME.
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Fig. 2. Schematic representation of the methodology. We obtained two models for each impact using the Bayesian Machine Scientist (BMS) and the STIRPAT. For each of

them, we compute a set of fitness metrics and the elasticities of the drivers.
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PRIMAP-hist (Giitschow et al., 2016).
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3.2. Comparison metrics

We estimate environmental impacts from six drivers using two
. . . J/ /
distinct regression models, f; and f,:

fitxa,...x)+e =y (1)
L1, ... xq)+e =y
where X1, ..., x4 denote the drivers thought to influence the stud-

ied variables, and y refers to the observed environmental impact.
The error terms are denoted by e; and e,. As surrogate models,
we use the well-known STIRPAT (York et al., 2003), and a model
obtained using the BMS (Guimera et al., 2020a).

The STIRPAT and BMS models are trained to minimize the error
and description length, respectively. The description length com-
bines the Bayesian information criterion (BIC), which accounts for
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the error and the structural complexity of the surrogate model,
with a prior. Details on how the description length is calculated
can be found elsewhere (Guimera et al., 2020a).

We define the predicted values for each model as Eq. (2)

fla(X1, ..., xg) = JSIRPAT Y e N

y
Fa(X1, ..., %g) =B VneN

where N is the set of data points indexed by n.

We evaluate the models in two ways. First, we evaluate the
ability of the models to describe observed data. To that end, we
compute three different metrics: the amount of variance explained
(R2), the mean squared error (MSE), and the BIC, as defined by
Eq. (3), Eq. (4), and Eq. (5), respectively.

Z <y _j;Model)Z
n n n

MS

(2)

RE=1 - 3)
Y0 O —3)°
2
Zn <yn _ﬁModel)
MSE = IN] (4)
2
Zn (_Vn _ﬁModel)
BIC =k -log (IN|) + |N|] log (27) + log N +1
(5)
-~ Model

Where y;, stands for the observed value for each data point, y;
stands for the predicted value for each data point determined us-
ing either the STIRPAT or the BMS model, y stands for the mean of
the observed environmental impacts, and k stands for the number
of parameters in the surrogate model plus one.

Second, because looking at goodness of fit metrics favors com-
plex models that overfit, we also evaluate the cross-validation er-
ror (CVE). We specifically follow a leave-one-country-out approach,
where we first obtain the structure of the model (i.e., the math-
ematical dependency of the impact on the drivers) with all the
points available. Afterward, we subdivide the data into subsets, or
folds, using all the countries but one as the training set. The left-
out country acts as the test set in each run. We repeat this proce-
dure for each country, calculating the cross-validation error as the
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average error in the test set of each fold, weighted considering the
size of each test set.

With the models obtained from all the data, we study the elas-
ticity of the drivers, a concept adopted from economics by the in-
dustrial ecology community to quantify the intensity of the links
between impacts and drivers. Notably, elasticity refers to the pro-
portional change in a dependent variable in response to a change
in an independent variable, maintaining the other independent
variables and parameters constant. As an illustrative example, for
a general equation y = f(x), the elasticity of the dependent vari-
able y to a change in the independent variable x is given by Eq. 6.

ay x
X [ —
E= oxy 6)
3.3. STIRPAT approach
The STIRPAT model is defined in Eq. 7.
[ = aP*APTY (7)

where P stands for the total population, A stands for affluence, of-
ten expressed as per capita gross product (GDP), and T stands for
the technology factor, while I denotes the impact. This model can
be further refined by reformulating T as the product of a set of
drivers j e J with values Dj, resulting in the term T'Y. The modi-
fied STIRPAT model we use in this work is shown in Eq. 8.
[ = aP*APTY

y ;
T7 =[]Dj

Jjel

where a is a constant, P* refers to the contribution of the popula-
tion, AP refers to the contribution of the affluence, D; refers to a
set of additional drivers, and w; denotes the exponent (elasticity)
of each driver. It is common practice to use an additive regression

model where the variables are in logarithmic form, as shown in Eq.
9.

log (I) = log (a) + & log (P) + B log (A) + ) _ w;log (D))
jel

(8)

(9)

The main advantage of the STIRPAT methodology is that the con-
stant elasticities are directly obtained from the values of the coef-
ficients o, B, w;. A coefficient with a value of 0 indicates that the
driver does not affect the impact. A coefficient with a value be-
tween 0 and 1 indicates an inelastic relationship, where the impact
increases less than the increase in the driving force. A value of 1
indicates a unit elastic relationship, where changes in the impact
are directly proportional to changes in the driver. A value above
1 indicates an elastic relationship, where an increase in the driver
produces an even higher increase in the impact. These elasticities
can be negative, in which case the direction of the proportional-
ity is inverted, i.e., a negative elastic relationship means that the
impact decreases at a greater proportion than the increase in the
driver.

3.4. BMS approach

The BMS identifies models for observed data by navigating
through the space of symbolic trees using a Markov chain Monte
Carlo algorithm. The BMS assumes the following general mathe-
matical dependency between the logarithm of the impact and so-
cioeconomic drivers (Eq. (10)).

log (I) = f(P, A, D;) (10)
We consider the same independent variables we use for the STIR-
PAT model: the population, the GDP per capita, and the additional

drivers. However, we do not consider the logarithm of these inde-
pendent variables but rather their original values. This is because
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Table 1
Performance metrics for the different environmental impacts using STIRPAT and
BMS.

Env. impact Metric STIRPAT BMS
CDE R? 0.858 0.869
MSE 0.677 0.626
BIC 10,296 9996
CVE 0.726 0.668
EC R? 0.861 0.870
MSE 0.627 0.588
BIC 9976 9715
CVE 0.662 0.611
NOE R? 0.809 0.817
MSE 0.649 0.620
BIC 10,123 9915
CVE 0.698 0.639
ME R? 0.809 0.825
MSE 0.625 0.572
BIC 9968 9605
CVE 0.673 0.609
Table 2
Coefficients of the STIRPAT equation.
Env. Impact Variable Coefficient
CDE Intercept 4.748*
log(GDP) 0.566"
log(TP) 0.914
log(AP) 2.741
log(DP) —0.052"
log(UR) 0.484*
log(AT) -2.318"
EC Intercept 18.405
log(GDP) 0.460*
log(TP) 0.911
log(AP) 2.309"
log(DP) —0.033"
log(UR) 0.541+
log(AT) -6.211
NOE Intercept 20.299+
log(GDP) 0.378*
log(TP) 0.940"*
log(AP) —1.656"*
log(DP) —0.145"
log(UR) —-0.052*
log(AT) —2.542"
ME Intercept —32.862"
log(GDP) 0.302"
log(TP) 0.931+
log(AP) 0.540%
log(DP) -0.217¢
log(UR) 0.149+
log(AT) 5.900%
* p < 0.20.
** p < 0.15.
= p < 0.01.

the BMS has the freedom to explore the logarithmic transformation
during the search over the space of mathematical expressions. The
BMS generates new models by sampling over the distribution of
the plausible mathematical models given the data. This plausibility
can be computed in terms of the description length (£), which we
can approximate as shown in Eq. 11.

L~ ? — log (POE) (11)

where POE is the prior over the mathematical expressions. Note
that the BMS sampling is not an optimization algorithm, but be-
cause it is ergodic, it ensures that the best model can be found.
From the sampling over models, we select the model with the
shortest description length.
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Fig. 4. Full data results for the four environmental impacts: a) Predicted value vs. real value, b) histogram of absolute relative errors for the STIRPAT and the Bayesian
Machine Scientist (BMS) in the logarithmic space. The notation for the impact categories is as follows: CDE refers to CO, emissions, EC refers to energy consumption, NOE

refers to N,O emissions and ME refers to methane emissions.

Note that to compare with the STIRPAT approach, the BMS looks
for models predicting the logarithm of the impact, but it is not a
necessary requirement.

The STIRPAT model assumes constant elasticities. By contrast,
the BMS does not. We can obtain the elasticities of the model
found with the BMS using a symbolic differentiation algorithm, like
the SymPy library of Python or the symbolic toolbox of MATLAB
R2020a.

3.5. Chosen drivers

As potential drivers, we consider the affluence and pop-
ulation, often the main driving forces of anthropogenic im-
pacts, expressed in GDP per capita (2020$/inhabitant) (The World
Bank, 2020a) (GDP) and total population (inhabitants) (The World
Bank, 2020b) (TP), respectively. Besides, based on the literature
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Fig. 5. Elasticities of models of CO, emissions. E, refers to the elasticity with respect to driver x, where x = GDP, TP (total population), AP (active population), DP (density
of population), UR (urbanization rate), and AT (average temperature). The histogram shows the distribution of the elasticities obtained from the Bayesian Machine Scientist
(BMS) model for each data point. Vertical lines correspond to the STIRPAT elasticity (turquoise) and the mean elasticity obtained from the BMS elasticity distribution (black).

(Teixid6-Figueras et al., 2016), we include the following four ad-
ditional (potential) drivers:

« The active population (AP): percentage of people with ages
comprehended between 15 and 64 years (source: World Bank
Group (The World Bank, 2019a)).

 Population density (DP): Inhabitants per square kilometer
(source: World Bank Group (The World Bank, 2019b)).

« Urbanization rate (UR): Percentage of population that lives in an
urban area (source: World Bank Group (The World Bank, 2018)).

- Climate (AT): We use the average temperature registered in the
country as a proxy for this driver (source: World Bank Climate
Portal (The World Bank, 2021)).

Note that the STIRPAT equation includes all these drivers in the
mathematical expression, while the BMS may or may not include
them depending on the structure of the model showing the best
description length. Hence, the BMS tackles the feature selection
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problem implicitly, i.e., which drivers are statistically relevant, dur-
ing the search for the best model.

We clarify that the potential drivers here analyzed were defined
based on the literature (Teixid6-Figueras et al., 2016; York et al.,
2003) and considering as well data availability. We stress that the
methodology is general enough to work with other drivers.

4. Results and discussion

We implemented the STIRPAT model in the Python 3.8 library
statsmodels 0.12.2. We run the BMS model using the original BMS
code provided in the repository (Guimera et al.,, 2020b) together
with Pandas 1.2.3 and SymPy 1.7.1. For the numerical calculations,
we used NumPy 1.20.1. We ran 5000 MCMC steps of the BMS algo-
rithm, requiring ca. five hours of CPU time, depending on the en-
vironmental impact. The STIRPAT model took less than 10 s for all
cases. We performed all the calculations on an Intel Core i9-9900
CPU @ 3.10 GHz. We clarify that there is no single work covering
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(density of population), UR (urbanization rate), and AT (average temperature). The histogram shows the distribution of the elasticities obtained from the Bayesian Machine
Scientist (BMS) model for each data point. Vertical lines correspond to the STIRPAT elasticity (turquoise) and the mean elasticity obtained from the BMS elasticity distribution

(black).

the same range of impacts and drivers studied here, yet some in-
vestigated a subset of them. Hence, in what follows, we focus on
assessing the performance of the BMS and compare the insight ob-
tained with that generated in other works, whenever possible.

4.1. Performance metrics

Table 1 shows the performance metrics for the STIRPAT and
BMS obtained using all the data. The STIRPAT provides good fits
but is consistently outperformed by the BMS in all the perfor-
mance metrics. This superior performance was expected since, the-
oretically, the STIRPAT equation is included in the search space of
the BMS. However, finding a better model requires a higher com-
putational cost (hours vs. seconds).

Fig. 4 shows the observed and predicted values and the his-
togram of absolute relative errors for both approaches. The two
surrogate models perform similarly in the logarithmic space. How-
ever, both models produce some estimates that deviate signifi-
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cantly from the diagonal. Moreover, the centroid of the histogram
of absolute relative errors is closer to zero in the BMS, highlighting
its better predictive capabilities.

4.2. Structure and feature selection

Table 2 shows the STIRPAT parameters found for the different
impacts.

On the other hand, the four models selected by the BMS are
shown below, with the corresponding parameters being displayed
in Table 3:

)

(a3UR-AT+1)? (a4GDP% DP-UR(TP+dg)+d7)
DP-UR-AT®

AP

a,GDP + AP log (
log (CDE) =

AP
log (EC) = aga; | a4 +AP<a§GDP . UR(‘;LP



D. Vdzquez, R. Guimerd, M. Sales-Pardo et al.

Frequency

Frequency

Frequency

800
700
600
500
400
300
200
100

1000

800

600

400

200

800

600

400

200

Sustainable Production and Consumption 30 (2022) 596-607

T T T T T T 1000 F, T T T L
- BMS mean:0.401H BMS mean:0.956
STIRPAT STIRPAT
value: 0.377(] 800 [\ 51 0e: 0.940

600

400

200

025 030 035 040 045 050 0.55 0.85 0.90 0.95 1.00 1.05
E Gop Erp
T T T T T T T T T T
B -1.302( "
2000 F BMS mean: -0.195 ]
- STIRPAT value: -0.145
1500 -
1000 E
500 E
0 1 1 1 1
-3 -2 -1 0 -0.5 0.0 0.5 1.0 1.5 2.0
Epp Epp
T T T T U T T T
1000 BMS mean:-1.998
~|BMS mean: -0.300 b STIRPAT
STIRPAT value:-0.052 800 value: -2.542
600
400
200
0
-0.8 -0.6 -0.4 -0.2 0.0 -2.6 =24 -2.2 -2.0 -1.8 -1.6 -1.4
Eur Ear
STIRPAT:  — BMS mean: — BMS distribution: wm

Fig. 7. Elasticities of the models of N,O emissions. Ex refers to the elasticity with respect to driver x, where x = GDP, TP (total population), AP (active population), DP (density
of population), UR (urbanization rate), and AT (average temperature). The histogram shows the distribution of the elasticities obtained from the Bayesian Machine Scientist
(BMS) model for each data point. Vertical lines correspond to the STIRPAT elasticity (turquoise) and the mean elasticity obtained from the BMS elasticity distribution (black).

Table 3
Values of the parameters of the BMS models for the different environmental im-
pacts.
Parameter log(CDE) log(EC) log(NOE) log(ME)
a -1.200x10° 5.804 90.005 —9.654x10-26
a; 5.503 —2.033 1.000 —0.278
as 1.720x10-° 0.594 1.598 —21.508
ay 1.808x108 —100.810 0.999 —2.858x1072
as 0.673 1.934 - 91.108
ag 9.997x10* 1.429x10°13 - -1.954x103
az 4.896x10'8 1.834x10'? -11.293
ag 2.186x10° - - -

DpP

UR?

a

AP
— AT = FY DP
log (NOE) = a4 + df (GDP + a1GDP> log (a5°TP)

"‘2;“6
DP

as DP

L& _TP% ' a,GDP(—asAT) ® + a

log (ME) = a; +
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Table 4

Feature selection. For each environmental impact, we show whether a driver ap-
pears in the model (X) or not (O) using STIRPAT|BMS approaches. For the STIRPAT
we consider drivers with a p-value < 0.1. A green cell means that both models
choose the driver, while an orange cell indicates a discrepancy between the mod-
els.

Env. Impact GDP TP AP DP UR AT
CDE X| X XX XX X|X X|X X|X
EC X| X XX XX X|X X|X X|X
NOE X| X XX X|X X|X 0|X X|X
ME X| X XX X|O0 X|X X|O X|X

As seen, both the STIRPAT and the BMS provide a good fit, yet

the BMS finds more complex expressions. Table 4 summarizes the
drivers chosen by each surrogate model assuming a significance
value of 0.1 for the p-values in the STIRPAT equation. Both ap-
proaches tend to consider all the drivers for all impacts with only
two exceptions where at least one driver is omitted in at least one
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Fig. 8. Elasticities of the models of CH4 emissions. Ex refers to the elasticity with respect to driver x, where x = GDP, TP (total population), AP (active population), DP (density
of population), UR (urbanization rate), and AT (average temperature). The histogram shows the distribution of the elasticities obtained from the Bayesian Machine Scientist
(BMS) model for each data point. Vertical lines correspond to the STIRPAT elasticity (turquoise) and the mean elasticity obtained from the BMS elasticity distribution (black).

of the approaches. For instance, the urban rate is not a significant
driver for NOE in the STIRPAT approach and is not a driver for
ME according to the BMS model. Similarly, the active population is
not considered as a necessary driver for ME according to the BMS
model, yet it is included in the STIRPAT.

4.3. Elasticities

Having observed that both methods tend to lead to similar
combinations of drivers, we next analyze the intensity of the link
drivers-impact using elasticities. In the STIRPAT model, the elastic-
ity is constant due to its specific canonical form that simplifies the
calculations, while it is variable and dependent on the drivers’ val-
ues in all the BMS expressions found above.

Figs. 5-8 show the histogram of elasticities for the BMS models
for all the impacts we consider. The elasticity has been evaluated
in each data point, considering the values of the drivers in that
particular observation. The figures also display the constant elas-
ticity obtained from the STIRPAT equation. Notably, we found that
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for all environmental impacts, the GDP and TP mean (BMS) and
constant elasticities (STIRPAT) lay between zero and one (inelas-
tic positive relationship), meaning that an increase in these drivers
tends to result in an increase of lower magnitude in all the en-
vironmental impacts. By contrast, looking again at the mean and
constant elasticities, DP always shows a negative inelastic relation-
ship. The mean and constant elasticities of the other drivers take
positive or negative values depending on the environmental im-
pact. In most cases, the mean elasticities for the BMS models lie
close to the constant elasticities of the STIRPAT equation, except
for the CH4 emissions model (Table 5), where two drivers (AP and
UR) are omitted by the BMS but kept by the STIRPAT. Although the
mean elasticities from the BMS are close to those reported by the
STIRPAT, they show a high variability depending on the data points
where they are calculated, even shifting their sign from negative to
positive. For example, the elasticity of the AP driver in energy con-
sumption (Fig. 6) ranges from -8 to 7, challenging the assumption
of constant elasticities in the STIRPAT approach. For the same im-
pact, i.e., energy consumption, the AT driver presents even higher
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Elasticity summary. The pairs are ordered as STIRPAT| mean of BMS. P denotes that the elasticity is positive, N denotes that the elasticity
is negative. E denotes elastic, while I denotes inelastic. O denotes that the elasticity is zero, and therefore, perfectly inelastic. In order to
compare our result to previous works, we refer to three main references, “R1” (York et al., 2003), “R2" (Teixid6-Figueras et al., 2016) and
“R3” (Le and Nguyen, 2020). Considering the relationship (positive or negative) between pairs driver - impact, bold states that our results

match previous findings, while italics mean that the results do not match previous findings. A “~

references the pair driver-impact was found.

“

indicates that no previous work that

Env. Impact GDP TP AP DP UR AT

CDE PI|PI PI|PI PE|PE NI|NI PI|PI NE|NE
R1, R2 R1 R1, R2 R2 R1, R2 R1, R2

EC PI|PI PI|PI PE|PE NI|NI PI|PI NE|NE
R1 R1 R1 - R1 R1

NOE PI|PI PI|PI NE|NE NI|NI NI|NI NE|NE
R3 - - - R3 -

ME PI|PI PI|PI PI|O NI|NI PI|O PE|PE
R3 - - - R3 -

variance, with values ranging from —19 to 5. Most of the values are
negative, in contrast to the AP driver where negative and positive
values are more balanced. Overall, these results show that using
symbolic, derivable expressions in this context challenges the un-
derstanding of how the drivers affect the environmental impacts in
different countries and periods.

In general, the signs of the elasticities -indicating how a driver
qualitatively affects the impact- are consistent with those found
in previous works for the same drivers and impacts (Teixido-
Figueras et al., 2016; York et al., 2003), with only some exceptions
(Le and Nguyen, 2020). Notably, of the 24 tuples driver-impact
studied, we find the same qualitative relationship in 13 of them
and two discrepancies, while the remaining nine cases were, as far
as the authors are aware, never investigated before.

A more in-depth discussion of Table 5 and the comparison with
existing works is available in Appendix B.

5. Conclusions

In this work, we applied Bayesian symbolic regression to build
predictive models of energy consumption and pollution from a
set of socioeconomic variables that could potentially act as im-
pact drivers. We investigated six drivers using the standard STIR-
PAT methodology and a Bayesian learning algorithm (BMS) that au-
tomatically builds analytical expressions from data.

Using a data set encompassing 168 countries and spanning 25
years (+4180 data points in general per impact), we found that the
BMS outperforms the STIRPAT approach in all the cases and under
all the fitness metrics investigated. In terms of findings, although
we are unaware of any study with a similar breadth (four impacts,
six drivers, and +4180 data points per impact) and depth (analy-
sis of any plausible mathematical expressions, rather than a fixed
one, using symbolic regression), our findings seem to be consis-
tent with those fragmented in the literature —-often based on much
fewer observations-. However, our approach challenges the use of
constant elasticities, a widespread assumption in the literature. No-
tably, the predictions made by the widely used STIRPAT model can
be outperformed by using other canonical expressions that do not
rely on constant elasticities. The average elasticities found by the
BMS tend to be close to the constant values provided by the STIR-
PAT. Yet, the BMS elasticities can take extreme values that differ
substantially from the STIRPAT solution. Hence, the assumption of
constant elasticities for the different drivers, often adopted in this
type of studies, might prevent us from finding better equations
leading to lower errors

Overall, this work paves the way for advanced ML methods
based on symbolic regression to model how socioeconomic drivers
impact energy consumption and pollution. By deriving analytical
expressions from data, practitioners will be able to generate addi-
tional insight and perform in-depth analyses more efficiently. Fu-
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ture work should focus on customizing the method to this prob-
lem, defining better statistical criteria to guide the search based
on a corpus of equations used in socioeconomic studies.
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