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a b s t r a c t 

Predicting countries’ energy consumption and pollution levels precisely from socioeconomic drivers will 

be essential to support sustainable policy-making in an effective manner. Current predictive models, like 

the widely used STIRPAT equation, are based on rigid mathematical expressions that assume constant 

elasticities. Using a Bayesian approach to symbolic regression, here we explore a vast amount of suitable 

mathematical expressions to model the link between energy-related impacts and socioeconomic drivers. 

We find closed-form analytical expressions that outperform the well-established STIRPAT equation and 

whose mathematical structure challenges the assumption of constant elasticities adopted in the literature. 

Our work unfolds new avenues to apply machine learning algorithms to derive analytical expressions 

from data in environmental studies, which could help find better models and solutions in energy-related 

problems. 

© 2021 The Author(s). Published by Elsevier B.V. on behalf of Institution of Chemical Engineers. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Today’s high living standards rely on the global trade, produc- 

ion, and use of resources, which results in a range of environmen- 

al impacts that could challenge the stability of the Earth system. 

otably, energy consumption reached 583.9 EJ in 2020 ( BP, 2020 ), 

eading to high levels of anthropogenic CO 2 emissions (31.5 Gt 

 IEA, 2021 )) due to the heavy reliance on fossil energy resources. 

he COVID-19 pandemic has reduced these consumption levels, yet 

he expected increase in fossil fuels consumption for 2021 would 

everse practically all the reductions achieved in 2020 ( IEA, 2021 ). 

here is, therefore, a clear need to curb emissions by shifting to 

ore sustainable energy sources and reducing the current high en- 

rgy demand. This will require deepening our knowledge on the 

pecific forces driving these energy-related environmental stressors 

o more effective policies can be developed. 

The term “driver” refers to a range of factors that can ex- 

lain the environmental footprint of a geographical or political 
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nit. Several analytical tools were developed to identify impact 

rivers based on closed-form analytical expressions linking impacts 

o driving forces. Such formulas are calibrated with data and then 

sed to predict how changes in the drivers affect changes in the 

mpact values. 

In a very influential work, Ehrlich and Holdren (1971) proposed 

he IPAT identity, which links the environmental impact with the 

opulation, affluence , and implemented technological levels. Im- 

act here may refer to CO 2 emissions or any other pressure ex- 

rted on the environment. The identity assumes a multiplicative 

ffect of the drivers that influence the impact, leading to the ex- 

ression, I = PAT , which gives name to the identity. The IPAT iden- 

ity has been mainly used as an accounting equation to compute 

he implemented technology level from a known population, afflu- 

nce, and environmental impact values. 

A caveat of the IPAT identity is that it cannot account for non- 

onotonic or non-proportional effects of the driving forces, which 

otivated the development of an alternative methodology. Notably, 

ork et al. (2003) put forward a stochastic version of the IPAT, 

ermed STIRPAT, which relates impacts to drivers using the concept 

f ecological elasticity. This model allows for a more in-depth anal- 

sis of the impact drivers, providing a quantitative framework to 

elate changes in inputs (drivers) to changes in outputs (impacts) 
emical Engineers. This is an open access article under the CC BY license 

https://doi.org/10.1016/j.spc.2021.12.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/spc
http://creativecommons.org/licenses/by/4.0/
mailto:marta.sales@urv.cat
mailto:gonzalo.guillen.gosalbez@chem.ethz.ch
https://doi.org/10.1016/j.spc.2021.12.025
http://creativecommons.org/licenses/by/4.0/


D. Vázquez, R. Guimerà, M. Sales-Pardo et al. Sustainable Production and Consumption 30 (2022) 596–607 

b

m

p

L

e

e

2  

2

(  

e  

2

u

i

k

e

t

f

w

d

i

G

t  

s

t

Fig. 1. Representation of the equation f ( x 1 , x 2 , x 3 ) = a x 1 − ( x 2 + x 3 ) using a binary 

tree. 
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Nomenclature 

Abbreviations & sets 

ANN Artificial neural network 

BMS Bayesian machine scientist 

GHG Greenhouse gas 

J { j : Set of drivers to study} 

LASSO Least absolute shrinkage and selection operator 

MCMC Markov chain Monte Carlo 

MINLP Mixed-integer nonlinear programming 

ML Machine learning 

N { n : Set of data points} 

SVM Support vector machine 

Variables & parameters 

AP Active population. Percentage of population with 

age comprehended between 15 and 64 years (%) 

AT Average temperature (K) 

BIC Bayesian information criterion 

CDE CO 2 emissions (kg CO 2 ) 

CVE Cross-validation error 

DP Population density. Number of habitants per square 

kilometer (inhabitants/km 

2 ) 

EC Energy consumption (TJ) 

GDP Gross domestic product per capita (2020$/inhabi- 

tant) 

ME CH 4 emissions (kg CH 4 ) 

MSE Mean squared error 

NOE N 2 O emissions (kg N 2 O) 

R 

2 Coefficient of determination 

TP Total population (inhabitants) 

UR Urbanization rate. Percentage of population that 

lives in an urban area (%) 

k Number of parameters in the surrogate model 

ȳ Mean of the observed values 

y n Observed value for data point n ̂ y n 
Model Predicted value using the surrogate model for data 

point n 

ased on a linear relationship in logarithmic space. The STIRPAT 

odel has been widely used in the literature to study multi- 

le environmental burdens, ranging from CO 2 ( Fan et al., 2006 ; 

ibao et al., 2017 ; Pao et al., 2012 ; Zhu et al., 2020 ), N 2 O and CH 4 

missions ( Le and Nguyen, 2020 ), and other greenhouse gas (GHG) 

missions ( Anser, 2019 ; Chekouri et al., 2020 ; Nosheen et al., 

020 ; Singh and Mukherjee, 2019 ), to water footprint ( Zhao et al.,

014 ), water pollution ( Zhang et al., 2017 ), phosphorus footprint 

 Jiang et al., 2019 ), ecological footprint ( Yang et al., 2021 ), and en-

rgy consumption ( Ibrahim et al., 2017 ; Lin et al., 2020 ; Ma et al.,

013 ). For example, these models showed that affluence and pop- 

lation are the main drivers of CO 2 emissions ( York et al., 2003 ). 

In recent years, the widespread use of machine learning (ML) 

n many scientific fields has unfolded new avenues for extracting 

nowledge from data by building predictive models. The STIRPAT 

quation is an example of an empirical relationship – linking an- 

hropogenic drivers to environmental impacts–, which was likely 

ound by manual procedures ( York et al., 2003 ). By contrast, here 

e are interested in generating plausible mathematical expressions 

escribing impact drivers in an automated manner without assum- 

ng any ad hoc fixed canonical formalism. 

ML algorithms such as artificial neural networks (ANN) and 

aussian processes have recently become prevalent regression 

ools ( Jean et al., 2016 ; Lee et al., 2018 ; Schweidtmann and Mit-

os, 2019 ). Support vector machines (SVM) have already been used 

o predict CO emissions ( Saleh et al., 2016 ) from electricity con- 
2 

597 
umption and the available technology in Indonesia, while ran- 

om forest algorithms were applied to predict agricultural N 2 O 

missions ( Saha et al., 2021 ) from intensively managed cropping 

ystems using ammonium, nitrate and clay content in the soil 

s predictive variables. More classical ML methodologies, such as 

east Absolute Shrinkage and Selection Operator (LASSO) regres- 

ion and feed-forward ANN, have also been applied to predict en- 

ironmental impacts. Hamrani et al. (2020) compared different ML 

pproaches to predict GHG emissions from agricultural soils, us- 

ng various inputs such as the air and ground temperature and 

ind speed. Hempel et al. (2020) predicted methane emissions 

f a dairy building with natural ventilation in Northern Germany 

sing ANN, linear regression, and other ML methodologies and 

onsidering as predictive variables (or features) the temperature, 

ind speed, and direction. Romeiko et al. (2020) applied Gradient 

oosting Regression Trees, ANN, and SVM to predict global warm- 

ng and eutrophication impacts of corn production from the tem- 

erature, precipitation, soil organic content, soil texture, applica- 

ion rates of both nitrogen and phosphorus fertilizers, and farming 

ractices. Nguyen et al. (2021) used random forests to create land 

se maps, which are useful to monitor and assess land-use change. 

hang et al. (2021) used an ANN to enhance the prediction of en- 

rgy demand and its price during the COVID-19 pandemic. 

The ML regression models above assume a fixed mathemat- 

cal structure encoded by a sequence of hyper-parameters –e.g., 

he number of neurons per layer and the number of layers in 

n ANN or the number of explanatory variables in a multi-linear 

egression– which control the learning process and are fixed be- 

orehand. These approaches then seek the model parameters that 

rovide the best fit to observed data. Similar to these ML ap- 

roaches, the STIRPAT model ( York et al., 2003 ) also relies on a 

xed mathematical structure, i.e., a log-linear equation. However, 

ssuming such a limited pre-defined structure may limit our abil- 

ty to explain observed data precisely. 

The problem of identifying governing principles and equations 

rom data has recently emerged as an active area of research in 

achine learning. In mathematical terms, the symbolic regres- 

ion problem (also called sparse regression and equation discovery) 

ims at finding both the structure of a model and its parameters 

rom a set of observations. Symbolic regression is often addressed 

y representing mathematical expressions using a symbolic tree, 

s shown in Fig. 1 . In these trees, leaf nodes correspond to ei- 

her a variable or a constant, while all parent nodes correspond 

o mathematical operators. An algorithm can then be coupled with 

he symbolic tree representation to navigate through the space of 

easible expressions and identify the one that best fits the data. 

Recent years have witnessed an increasing interest in symbolic 

egression ( Cozad and Sahinidis, 2018 ; Neumann et al., 2020 ). Un- 

ike other ML methods, symbolic regression has the advantage of 

roviding an explicit closed-form equation that can be manip- 

lated algebraically, differentiated, and analyzed more in-depth. 

NNs also lead to mathematical expressions, yet they combine ac- 
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ivation functions and weights in a single formalism that is hard to 

nterpret. 

Various symbolic regression approaches have been put forward 

ypically with the sole aim of finding a unique best mathemati- 

al representation of the data. These approaches mainly differ in 

hether the optimization approach used to explore the space of 

ymbolic trees is stochastic or deterministic. Stochastic methods, 

uch as those using genetic algorithms to explore the search space 

 Žegklitz and Pošík, 2021 ), tend to be faster and easier to imple-

ent, yet they cannot guarantee convergence to the global opti- 

um within an epsilon tolerance unless the algorithm is run for 

n infinite time. By contrast, deterministic methods often require 

ore significant CPU times but can provide a bound on the min- 

mum error that could be attained with the best model. More re- 

ently, deterministic optimization was applied to the symbolic re- 

ression problem by formulating a mixed-integer nonlinear pro- 

ram (MINLP) ( Cozad and Sahinidis, 2018 ). This MINLP can be 

olved to local optimality by standard MINLP methods , such as 

he nonlinear branch and bound ( Dakin, 1965 ) and outer approxi- 

ation algorithms ( Duran and Grossmann, 1986 ), or to global op- 

imality using deterministic global optimization algorithms. 

In a recent article, some of us have developed an alternative 

pproach to symbolic regression that is rooted in probability the- 

ry and allows computing the plausibility of each mathematical 

xpression given the observed data, which we call the Bayesian 

achine Scientist (BMS) ( Guimerà et al., 2020a ). The BMS uses a 

tochastic Markov chain Monte Carlo (MCMC) algorithm to explore 

he space of possible mathematical expressions according to their 

lausibility in an ergodic manner. The plausibility of each model 

s obtained as the description length of the model and the data, 

hich can be computed from the Bayesian information criterion 

 BIC) and the logarithm of the prior over the expressions consid- 

red. The prior, which controls for the structural complexity of 

he mathematical model and therefore acts as a structural regular- 

zer, was obtained from a corpus of 4080 mathematical expressions 

ound in Wikipedia. The BMS was shown to outperform state-of- 

he-art symbolic regression approaches as well as standard ML re- 

ression models, such as Gaussian processes, at fitting data and 

redicting out-of-sample data. 

To the best of our knowledge, symbolic regression has never 

een applied to identify energy consumption and pollution drivers, 

hich are still studied mainly using the STIRPAT method based on 

 fixed, known mathematical structure. To go beyond these ap- 

roaches, here we use for the first time a Bayesian symbolic re- 

ression approach (i.e., the BMS) to identify environmental impact 

rivers from a set of socioeconomic descriptors. We find that the 

MS leads to expressions that outperform the STIRPAT equation 

t explaining the variance of data. Moreover, our results challenge 

he assumption of constant elasticities, widely adopted in STIRPAT 

odels, by which a constant increment in one driver always results 

n a constant change in impact. On the downside, the symbolic re- 

ression algorithm provides more complex analytical expressions 

compared to the STIRPAT model), although the level of complexity 

an still be controlled through an appropriate tuning of the algo- 

ithm 

The paper is structured as follows. First, we present the prob- 

em statement and the methodology. Then, we introduce the case 

tudy. Finally, we discuss the results and draw some conclusions. 

. Problem statement 

Our goal is to find a mathematical expression to predict en- 

ironmental impacts from a set of socioeconomic drivers to be 

dentified from a pool of variables. Hence, the data available com- 

rise a series of potential drivers and environmental impacts of a 

et of countries at different years. These input data, i.e., indepen- 
598 
ent variables, have dimensions x × y , where x is the number of 

airs country-year studied and y the number of potential drivers. 

he output data, i.e., dependent variables, has dimensions x × z, 

here z is the number of environmental impacts studied. We clar- 

fy here that impact can refer to (i) a direct damage to the envi- 

onment; (ii) a set of emissions ultimately responsible for an im- 

act, or (iii) the energy consumption level, ultimately leading to 

missions and, hence, to impacts. The objective is to study the in- 

uence of socio-economical drivers on environmental impacts. For 

xample, we might be interested in predicting the CO 2 emissions 

f a country from the population, affluence, and other socioeco- 

omic descriptors. 

. Methodology 

Fig. 2 shows a schematic representation of the overall method- 

logy. We train two surrogate models, the BMS and the STIR- 

AT, to predict four environmental impacts using six socioeconomic 

rivers. For the obtained models, we then compute the elasticities, 

hat is, the percentage change of the output in response to a per- 

entage change in the inputs. 

.1. Data 

We obtained data from the World Data Bank and the EORA 

atabase ( Lenzen et al., 2013 ). We pre-processed the data from 

ORA to use consumption-based impacts in the calculations (rather 

han production-based), as discussed in Appendix A. 

We study the effects of six environmental drivers, i.e., total pop- 

lation, GDP per capita, active population, population density, ur- 

anization rate, and climate, on four environmental impact cate- 

ories: CO 2 emissions ( CDE ) , energy consumption ( EC ) , N 2 O emis-

ions ( NOE ) , and CH 4 emissions ( ME ) at the country level, with

ata spanning 25 years, from 1990 to 2015. Energy consump- 

ion includes power, fuels, and heating. CO 2 emissions are, there- 

ore, strongly connected to energy consumption, as energy sources 

re mostly fossil-based. CH 4 is the second most important GHG 

mission in terms of global anthropogenic contribution to climate 

hange ( Marmier and Schosger, 2020 ). Approximately 36.9% of the 

orld’s anthropogenic CH 4 emissions are linked to natural gas and 

etroleum energy systems ( IEA, 2020 ). For completeness, we also 

onsider the third most important GHG emission, N 2 O. Although 

 2 O is mainly emitted in agriculture, approximately 23.3% of the 

nthropogenic N 2 O emissions are linked to the burning of biomass 

nd to fossil fuels use and industrial processes ( Tian et al., 2020 ). 

Fig. 3 shows a breakdown of GHG emissions depending on the 

ource for 2018, as presented in PRIMAP-hist ( Gütschow et al., 

016 ). 

Following the notation in EORA, CO 2 emissions correspond to 

he entry “Total CO 2 emissions from EDGAR”, in kg. We obtain the 

nergy consumption by adding the following terms: “Energy Us- 

ge, Coal”, “Energy Usage, Natural Gas”, “Energy Usage, Petroleum”, 

Energy Usage, Nuclear Electricity”, “Energy Usage, Hydroelectric 

lectricity”, “Energy Usage, Geothermal Electricity”, “Energy Us- 

ge, Wind Electricity”, “Energy Usage, Solar, Tide and Wave Elec- 

ricity”, and “Energy Usage, Biomass and Waste Electricity”, in TJ. 

 2 O emissions correspond to the category “GHG emissions from 

RIMAPHIST, N 2 O, total excluding LULUCF” in kg. Finally, CH 4 emis- 

ions correspond to the entry “GHG emissions from PRIMAPHIST, 

H 4 , total excluding LULUCF”. 

Due to data gaps, we consider only the pairs country-year with 

omplete information for all the drivers studied. Overall, our data 

et comprises 4183 data points for CDE, 4184 data points for EC, 

nd 4185 points for both NOE and ME. 
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Fig. 2. Schematic representation of the methodology. We obtained two models for each impact using the Bayesian Machine Scientist (BMS) and the STIRPAT. For each of 

them, we compute a set of fitness metrics and the elasticities of the drivers. 

Fig. 3. Source of the greenhouse gas (GHG) emissions per sector in 2018 from 

PRIMAP-hist ( Gütschow et al., 2016 ). 
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.2. Comparison metrics 

We estimate environmental impacts from six drivers using two 

istinct regression models, f 
′ 
1 

and f 
′ 
2 
: 

f 
’ 

1 ( x 1 , . . . , x d ) + e 1 = y 

f 
’ 

2 ( x 1 , . . . , x d ) + e 2 = y 
(1) 

here x 1 , . . . , x d denote the drivers thought to influence the stud- 

ed variables, and y refers to the observed environmental impact. 

he error terms are denoted by e 1 and e 2 . As surrogate models, 

e use the well-known STIRPAT ( York et al., 2003 ), and a model

btained using the BMS ( Guimerà et al., 2020a ). 

The STIRPAT and BMS models are trained to minimize the error 

nd description length, respectively. The description length com- 

ines the Bayesian information criterion ( BIC), which accounts for 
599 
he error and the structural complexity of the surrogate model, 

ith a prior. Details on how the description length is calculated 

an be found elsewhere ( Guimerà et al., 2020a ). 

We define the predicted values for each model as Eq. (2) 

f ′ 1 n ( x 1 , . . . , x d ) = 

ˆ y STIRPAT 
n ∀ n ∈ N 

f ′ 2 n ( x 1 , . . . , x d ) = 

ˆ y BMS 
n ∀ n ∈ N (2) 

here N is the set of data points indexed by n . 

We evaluate the models in two ways. First, we evaluate the 

bility of the models to describe observed data. To that end, we 

ompute three different metrics: the amount of variance explained 

 R 2 ), the mean squared error ( MSE), and the BIC, as defined by 

q. (3) , Eq. (4) , and Eq. (5) , respectively. 

 

2 = 1 −
∑ 

n 

(
y n − ̂ y n 

Model 
)2 

∑ 

n ( y n − ȳ ) 
2 

(3) 

SE = 

∑ 

n 

(
y n − ̂ y n 

Model 
)2 

| N | (4) 

IC = k · log ( | N | ) + | N | 

⎛ 

⎜ ⎝ 

log ( 2 π) + log 

⎛ 

⎜ ⎝ 

∑ 

n 

(
y n − ̂ y n 

Model 
)2 

| N | 

⎞ 

⎟ ⎠ 

+ 1 

⎞ 

⎟ ⎠ 

(5) 

here y n stands for the observed value for each data point, ̂ y n 
Model 

tands for the predicted value for each data point determined us- 

ng either the STIRPAT or the BMS model, ȳ stands for the mean of 

he observed environmental impacts, and k stands for the number 

f parameters in the surrogate model plus one. 

Second, because looking at goodness of fit metrics favors com- 

lex models that overfit, we also evaluate the cross-validation er- 

or ( CV E). We specifically follow a leave-one-country-out approach, 

here we first obtain the structure of the model (i.e., the math- 

matical dependency of the impact on the drivers) with all the 

oints available. Afterward, we subdivide the data into subsets, or 

olds, using all the countries but one as the training set. The left- 

ut country acts as the test set in each run. We repeat this proce- 

ure for each country, calculating the cross-validation error as the 
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Table 1 

Performance metrics for the different environmental impacts using STIRPAT and 

BMS. 

Env. impact Metric STIRPAT BMS 

CDE R 2 0.858 0.869 

MSE 0.677 0.626 

BIC 10,296 9996 

CV E 0.726 0.668 

EC R 2 0.861 0.870 

MSE 0.627 0.588 

BIC 9976 9715 

CV E 0.662 0.611 

NOE R 2 0.809 0.817 

MSE 0.649 0.620 

BIC 10,123 9915 

CV E 0.698 0.639 

ME R 2 0.809 0.825 

MSE 0.625 0.572 

BIC 9968 9605 

CV E 0.673 0.609 

Table 2 

Coefficients of the STIRPAT equation. 

Env. Impact Variable Coefficient 

CDE Intercept 4.748 ∗∗

log ( GDP ) 0.566 ∗∗∗

log ( TP ) 0.914 ∗∗∗

log ( AP ) 2.741 ∗∗∗

log ( DP ) −0.052 ∗∗∗

log ( UR ) 0.484 ∗∗∗

log ( AT ) −2.318 ∗∗∗

EC Intercept 18.405 ∗∗∗

log ( GDP ) 0.460 ∗∗∗

log ( TP ) 0.911 ∗∗∗

log ( AP ) 2.309 ∗∗∗

log ( DP ) −0.033 ∗∗∗

log ( UR ) 0.541 ∗∗∗

log ( AT ) −6.211 ∗∗∗

NOE Intercept 20.299 ∗∗∗

log ( GDP ) 0.378 ∗∗∗

log ( TP ) 0.940 ∗∗∗

log ( AP ) −1.656 ∗∗∗

log ( DP ) −0.145 ∗∗∗

log ( UR ) −0.052 ∗

log ( AT ) −2.542 ∗∗∗

ME Intercept −32.862 ∗∗∗

log ( GDP ) 0.302 ∗∗∗

log ( TP ) 0.931 ∗∗∗

log ( AP ) 0.540 ∗∗∗

log ( DP ) −0.217 ∗∗∗

log ( UR ) 0.149 ∗∗∗

log ( AT ) 5.900 ∗∗∗

∗ p < 0.20. 
∗∗ p < 0.15. 
∗∗∗ p < 0.01. 

t

d

B

t

c

c

L

w

t

c

F

s

verage error in the test set of each fold, weighted considering the 

ize of each test set. 

With the models obtained from all the data, we study the elas- 

icity of the drivers, a concept adopted from economics by the in- 

ustrial ecology community to quantify the intensity of the links 

etween impacts and drivers. Notably, elasticity refers to the pro- 

ortional change in a dependent variable in response to a change 

n an independent variable, maintaining the other independent 

ariables and parameters constant. As an illustrative example, for 

 general equation y = f (x ) , the elasticity of the dependent vari-

ble y to a change in the independent variable x is given by Eq. 6.

 

x = 

∂y 

∂x 

x 

y 
(6) 

.3. STIRPAT approach 

The STIRPAT model is defined in Eq. 7. 

 = aP αA 

βT γ (7) 

here P stands for the total population, A stands for affluence, of- 

en expressed as per capita gross product (GDP), and T stands for 

he technology factor, while I denotes the impact. This model can 

e further refined by reformulating T as the product of a set of 

rivers j ∈ J with values D j , resulting in the term T ′ γ . The modi- 

ed STIRPAT model we use in this work is shown in Eq. 8. 

 = aP αA 

βT ’ γ

T ’ γ = 

∏ 

j∈ J 
D 

ω j 
j 

(8) 

here a is a constant, P α refers to the contribution of the popula- 

ion, A 

β refers to the contribution of the affluence, D j refers to a 

et of additional drivers, and ω j denotes the exponent (elasticity) 

f each driver. It is common practice to use an additive regression 

odel where the variables are in logarithmic form, as shown in Eq. 

. 

og ( I ) = log ( a ) + α log ( P ) + β log ( A ) + 

∑ 

j∈ J 
ω j log 

(
D j 

)
(9) 

he main advantage of the STIRPAT methodology is that the con- 

tant elasticities are directly obtained from the values of the coef- 

cients α, β, ω i . A coefficient with a value of 0 indicates that the

river does not affect the impact. A coefficient with a value be- 

ween 0 and 1 indicates an inelastic relationship, where the impact 

ncreases less than the increase in the driving force. A value of 1 

ndicates a unit elastic relationship, where changes in the impact 

re directly proportional to changes in the driver. A value above 

 indicates an elastic relationship, where an increase in the driver 

roduces an even higher increase in the impact. These elasticities 

an be negative, in which case the direction of the proportional- 

ty is inverted, i.e., a negative elastic relationship means that the 

mpact decreases at a greater proportion than the increase in the 

river. 

.4. BMS approach 

The BMS identifies models for observed data by navigating 

hrough the space of symbolic trees using a Markov chain Monte 

arlo algorithm. The BMS assumes the following general mathe- 

atical dependency between the logarithm of the impact and so- 

ioeconomic drivers ( Eq. (10) ). 

og ( I ) = f 
(
P, A, D j 

)
(10) 

e consider the same independent variables we use for the STIR- 

AT model: the population, the GDP per capita, and the additional 

rivers. However, we do not consider the logarithm of these inde- 

endent variables but rather their original values. This is because 
600 
he BMS has the freedom to explore the logarithmic transformation 

uring the search over the space of mathematical expressions. The 

MS generates new models by sampling over the distribution of 

he plausible mathematical models given the data. This plausibility 

an be computed in terms of the description length ( L ), which we 

an approximate as shown in Eq. 11. 

 ≈ BIC 

2 

− log ( P OE ) (11) 

here P OE is the prior over the mathematical expressions. Note 

hat the BMS sampling is not an optimization algorithm, but be- 

ause it is ergodic, it ensures that the best model can be found. 

rom the sampling over models, we select the model with the 

hortest description length. 



D. Vázquez, R. Guimerà, M. Sales-Pardo et al. Sustainable Production and Consumption 30 (2022) 596–607 

Fig. 4. Full data results for the four environmental impacts: a) Predicted value vs. real value, b) histogram of absolute relative errors for the STIRPAT and the Bayesian 

Machine Scientist (BMS) in the logarithmic space. The notation for the impact categories is as follows: CDE refers to CO 2 emissions, EC refers to energy consumption, NOE

refers to N 2 O emissions and ME refers to methane emissions. 
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u
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B

Note that to compare with the STIRPAT approach, the BMS looks 

or models predicting the logarithm of the impact, but it is not a 

ecessary requirement. 

The STIRPAT model assumes constant elasticities. By contrast, 

he BMS does not. We can obtain the elasticities of the model 

ound with the BMS using a symbolic differentiation algorithm, like 

he SymPy library of Python or the symbolic toolbox of MATLAB 

2020a. 
601 
.5. Chosen drivers 

As potential drivers, we consider the affluence and pop- 

lation, often the main driving forces of anthropogenic im- 

acts, expressed in GDP per capita (2020$/inhabitant) ( The World 

ank, 2020a ) ( GDP ) and total population (inhabitants) ( The World 

ank, 2020b ) ( T P ), respectively. Besides, based on the literature 
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Fig. 5. Elasticities of models of CO 2 emissions. E x refers to the elasticity with respect to driver x , where x = GDP, T P (total population), AP (active population), DP (density 

of population), UR (urbanization rate), and AT (average temperature). The histogram shows the distribution of the elasticities obtained from the Bayesian Machine Scientist 

(BMS) model for each data point. Vertical lines correspond to the STIRPAT elasticity (turquoise) and the mean elasticity obtained from the BMS elasticity distribution (black). 
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 Teixidó-Figueras et al., 2016 ), we include the following four ad- 

itional (potential) drivers: 

• The active population ( AP ): percentage of people with ages 

comprehended between 15 and 64 years (source: World Bank 

Group ( The World Bank, 2019a )). 

• Population density ( DP ): Inhabitants per square kilometer 

(source: World Bank Group ( The World Bank, 2019b )). 

• Urbanization rate ( UR ): Percentage of population that lives in an 

urban area (source: World Bank Group ( The World Bank, 2018 )). 

• Climate ( AT ) : We use the average temperature registered in the 

country as a proxy for this driver (source: World Bank Climate 

Portal ( The World Bank, 2021 )). 

Note that the STIRPAT equation includes all these drivers in the 

athematical expression, while the BMS may or may not include 

hem depending on the structure of the model showing the best 

escription length. Hence, the BMS tackles the feature selection 
602 
roblem implicitly, i.e., which drivers are statistically relevant, dur- 

ng the search for the best model. 

We clarify that the potential drivers here analyzed were defined 

ased on the literature ( Teixidó-Figueras et al., 2016 ; York et al., 

003 ) and considering as well data availability. We stress that the 

ethodology is general enough to work with other drivers. 

. Results and discussion 

We implemented the STIRPAT model in the Python 3.8 library 

tatsmodels 0.12.2. We run the BMS model using the original BMS 

ode provided in the repository ( Guimerà et al., 2020b ) together 

ith Pandas 1.2.3 and SymPy 1.7.1. For the numerical calculations, 

e used NumPy 1.20.1. We ran 50 0 0 MCMC steps of the BMS algo-

ithm, requiring ca. five hours of CPU time, depending on the en- 

ironmental impact. The STIRPAT model took less than 10 s for all 

ases. We performed all the calculations on an Intel Core i9–9900 

PU @ 3.10 GHz. We clarify that there is no single work covering 
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Fig. 6. Elasticities of the models of energy consumption. E x refers to the elasticity with respect to driver x , where x = GDP, T P (total population), AP (active population), DP

(density of population), UR (urbanization rate), and AT (average temperature). The histogram shows the distribution of the elasticities obtained from the Bayesian Machine 

Scientist (BMS) model for each data point. Vertical lines correspond to the STIRPAT elasticity (turquoise) and the mean elasticity obtained from the BMS elasticity distribution 

(black). 
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he same range of impacts and drivers studied here, yet some in- 

estigated a subset of them. Hence, in what follows, we focus on 

ssessing the performance of the BMS and compare the insight ob- 

ained with that generated in other works, whenever possible. 

.1. Performance metrics 

Table 1 shows the performance metrics for the STIRPAT and 

MS obtained using all the data. The STIRPAT provides good fits 

ut is consistently outperformed by the BMS in all the perfor- 

ance metrics. This superior performance was expected since, the- 

retically, the STIRPAT equation is included in the search space of 

he BMS. However, finding a better model requires a higher com- 

utational cost (hours vs. seconds). 

Fig. 4 shows the observed and predicted values and the his- 

ogram of absolute relative errors for both approaches. The two 

urrogate models perform similarly in the logarithmic space. How- 

ver, both models produce some estimates that deviate signifi- 
603 
antly from the diagonal. Moreover, the centroid of the histogram 

f absolute relative errors is closer to zero in the BMS, highlighting 

ts better predictive capabilities. 

.2. Structure and feature selection 

Table 2 shows the STIRPAT parameters found for the different 

mpacts. 

On the other hand, the four models selected by the BMS are 

hown below, with the corresponding parameters being displayed 

n Table 3: 

og ( CDE ) = 

a 1 GDP + AP a 2 log 

(
( a 3 UR ·AT +1 ) 

3 
( a 4 GD P a 5 DP ·UR ( TP + a 6 ) + a 7 ) 

DP ·UR ·AT 6 

)
− a 8 

AP a 2 

og ( EC ) = a 6 a 7 

⎛ 

⎝ a 4 + AP 

(
a 2 7 GDP · UR 

(
a AP 

5 

T P 

)a 2 ) a 1 + a DP 
3 

AT 

+ AP 

⎞ 

⎠ 
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Fig. 7. Elasticities of the models of N 2 O emissions. E x refers to the elasticity with respect to driver x , where x = GDP, T P (total population), AP (active population), DP (density 

of population), UR (urbanization rate), and AT (average temperature). The histogram shows the distribution of the elasticities obtained from the Bayesian Machine Scientist 

(BMS) model for each data point. Vertical lines correspond to the STIRPAT elasticity (turquoise) and the mean elasticity obtained from the BMS elasticity distribution (black). 

Table 3 

Values of the parameters of the BMS models for the different environmental im- 

pacts. 

Parameter log( CDE ) log( E C ) log( NOE ) log( ME ) 

a 1 −1.200 ×10 5 5.804 90.005 −9.654 ×10 −26 

a 2 5.503 −2.033 1.000 −0.278 

a 3 1.720 ×10 −5 0.594 1.598 −21.508 

a 4 1.808 ×10 8 −100.810 0.999 −2.858 ×10 −2 

a 5 0.673 1.934 – 91.108 

a 6 9.997 ×10 4 1.429 ×10 −13 – −1.954 ×10 3 

a 7 4.896 ×10 18 1.834 ×10 12 – −11.293 

a 8 2.186 ×10 9 – – –

l

l

Table 4 

Feature selection. For each environmental impact, we show whether a driver ap- 

pears in the model (X) or not (O) using STIRPAT|BMS approaches. For the STIRPAT 

we consider drivers with a p-value < 0.1. A green cell means that both models 

choose the driver, while an orange cell indicates a discrepancy between the mod- 

els. 

t

d

v

p

t

og ( NOE ) = a 4 + a AT 
4 

(
DP 

GDP 
+ 

U R 

2 

a 1 GDP 

)− a 3 
AP 

log 
(
a DP 

2 T P 
)

og ( ME ) = a 7 + 

a 3 
a 4 a 5 − T P a 4 

+ 

D P 
a 2 

4 
a 6 

DP 

a 1 GDP ( −a 4 AT ) 
−a 3 + a 2 
GDP 

604 
As seen, both the STIRPAT and the BMS provide a good fit, yet 

he BMS finds more complex expressions. Table 4 summarizes the 

rivers chosen by each surrogate model assuming a significance 

alue of 0.1 for the p-values in the STIRPAT equation. Both ap- 

roaches tend to consider all the drivers for all impacts with only 

wo exceptions where at least one driver is omitted in at least one 
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Fig. 8. Elasticities of the models of CH 4 emissions. E x refers to the elasticity with respect to driver x , where x = GDP, T P (total population), AP (active population), DP (density 

of population), UR (urbanization rate), and AT (average temperature). The histogram shows the distribution of the elasticities obtained from the Bayesian Machine Scientist 

(BMS) model for each data point. Vertical lines correspond to the STIRPAT elasticity (turquoise) and the mean elasticity obtained from the BMS elasticity distribution (black). 
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f the approaches. For instance, the urban rate is not a significant 

river for NOE in the STIRPAT approach and is not a driver for 

E according to the BMS model. Similarly, the active population is 

ot considered as a necessary driver for ME according to the BMS 

odel, yet it is included in the STIRPAT. 

.3. Elasticities 

Having observed that both methods tend to lead to similar 

ombinations of drivers, we next analyze the intensity of the link 

rivers-impact using elasticities. In the STIRPAT model, the elastic- 

ty is constant due to its specific canonical form that simplifies the 

alculations, while it is variable and dependent on the drivers’ val- 

es in all the BMS expressions found above. 

Figs. 5-8 show the histogram of elasticities for the BMS models 

or all the impacts we consider. The elasticity has been evaluated 

n each data point, considering the values of the drivers in that 

articular observation. The figures also display the constant elas- 

icity obtained from the STIRPAT equation. Notably, we found that 
605 
or all environmental impacts, the GDP and T P mean (BMS) and 

onstant elasticities (STIRPAT) lay between zero and one (inelas- 

ic positive relationship), meaning that an increase in these drivers 

ends to result in an increase of lower magnitude in all the en- 

ironmental impacts. By contrast, looking again at the mean and 

onstant elasticities, DP always shows a negative inelastic relation- 

hip. The mean and constant elasticities of the other drivers take 

ositive or negative values depending on the environmental im- 

act. In most cases, the mean elasticities for the BMS models lie 

lose to the constant elasticities of the STIRPAT equation, except 

or the CH 4 emissions model ( Table 5 ), where two drivers ( AP and

R ) are omitted by the BMS but kept by the STIRPAT. Although the 

ean elasticities from the BMS are close to those reported by the 

TIRPAT, they show a high variability depending on the data points 

here they are calculated, even shifting their sign from negative to 

ositive. For example, the elasticity of the AP driver in energy con- 

umption ( Fig. 6 ) ranges from –8 to 7, challenging the assumption 

f constant elasticities in the STIRPAT approach. For the same im- 

act, i.e., energy consumption, the AT driver presents even higher 
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Table 5 

Elasticity summary. The pairs are ordered as STIRPAT| mean of BMS. P denotes that the elasticity is positive, N denotes that the elasticity 

is negative. E denotes elastic, while I denotes inelastic. O denotes that the elasticity is zero, and therefore, perfectly inelastic. In order to 

compare our result to previous works, we refer to three main references, “R1” ( York et al., 2003 ), “R2” ( Teixidó-Figueras et al., 2016 ) and 

“R3” ( Le and Nguyen, 2020 ). Considering the relationship (positive or negative) between pairs driver – impact, bold states that our results 

match previous findings, while italics mean that the results do not match previous findings. A “–“ indicates that no previous work that 

references the pair driver–impact was found. 

Env. Impact GDP T P AP DP UR AT 

CDE PI|PI 
R1, R2 

PI|PI 
R1 

PE|PE 
R1, R2 

NI|NI 
R2 

PI|PI 
R1, R2 

NE|NE 
R1, R2 

EC PI|PI 
R1 

PI|PI 
R1 

PE|PE 
R1 

NI|NI 
–

PI|PI 
R1 

NE|NE 
R1 

NOE PI|PI 
R3 

PI|PI 
–

NE|NE 
–

NI|NI 
–

NI|NI 
R3 

NE|NE 
–

ME PI|PI 
R3 

PI|PI 
–

PI|O 
–

NI|NI 
–

PI|O 
R3 

PE|PE 
–
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ariance, with values ranging from −19 to 5. Most of the values are 

egative, in contrast to the AP driver where negative and positive 

alues are more balanced. Overall, these results show that using 

ymbolic, derivable expressions in this context challenges the un- 

erstanding of how the drivers affect the environmental impacts in 

ifferent countries and periods. 

In general, the signs of the elasticities -indicating how a driver 

ualitatively affects the impact- are consistent with those found 

n previous works for the same drivers and impacts ( Teixidó- 

igueras et al., 2016 ; York et al., 2003 ), with only some exceptions

 Le and Nguyen, 2020 ). Notably, of the 24 tuples driver-impact 

tudied, we find the same qualitative relationship in 13 of them 

nd two discrepancies, while the remaining nine cases were, as far 

s the authors are aware, never investigated before. 

A more in-depth discussion of Table 5 and the comparison with 

xisting works is available in Appendix B. 

. Conclusions 

In this work, we applied Bayesian symbolic regression to build 

redictive models of energy consumption and pollution from a 

et of socioeconomic variables that could potentially act as im- 

act drivers. We investigated six drivers using the standard STIR- 

AT methodology and a Bayesian learning algorithm (BMS) that au- 

omatically builds analytical expressions from data. 

Using a data set encompassing 168 countries and spanning 25 

ears ( + 4180 data points in general per impact), we found that the 

MS outperforms the STIRPAT approach in all the cases and under 

ll the fitness metrics investigated. In terms of findings, although 

e are unaware of any study with a similar breadth (four impacts, 

ix drivers, and + 4180 data points per impact) and depth (analy- 

is of any plausible mathematical expressions, rather than a fixed 

ne, using symbolic regression), our findings seem to be consis- 

ent with those fragmented in the literature –often based on much 

ewer observations–. However, our approach challenges the use of 

onstant elasticities, a widespread assumption in the literature. No- 

ably, the predictions made by the widely used STIRPAT model can 

e outperformed by using other canonical expressions that do not 

ely on constant elasticities. The average elasticities found by the 

MS tend to be close to the constant values provided by the STIR- 

AT. Yet, the BMS elasticities can take extreme values that differ 

ubstantially from the STIRPAT solution. Hence, the assumption of 

onstant elasticities for the different drivers, often adopted in this 

ype of studies, might prevent us from finding better equations 

eading to lower errors 

Overall, this work paves the way for advanced ML methods 

ased on symbolic regression to model how socioeconomic drivers 

mpact energy consumption and pollution. By deriving analytical 

xpressions from data, practitioners will be able to generate addi- 

ional insight and perform in-depth analyses more efficiently. Fu- 
606 
ure work should focus on customizing the method to this prob- 

em, defining better statistical criteria to guide the search based 

n a corpus of equations used in socioeconomic studies. 
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