HIGHLIGHTS

news

Bayesian symbolic learning to build analytical correlations from rigorous process simulations: Application to CO2 capture technologies

ACS Omega - Nov. 2, 2022



Process modeling has become a fundamental tool to guide experimental work. Unfortunately, process models based on first principles can be expensive to develop and evaluate, and hard to use, particularly when convergence issues arise. This work proves that Bayesian symbolic learning can be applied to derive simple closed-form expressions from...

Read more

news

Stochastic block models reveal a robust nested pattern in healthy human gut microbiomes

PNAS Nexus - May 23, 2022



A key question in human gut microbiome research is what are the robust structural patterns underlying its taxonomic composition. Herein, we use whole metagenomic datasets from healthy human guts to show that such robust patterns do exist, albeit not in the conventional enterotype sense. We first introduce the concept of...

Read more

news

Bayesian machine scientist to compare data collapses for the Nikuradse dataset

Phys. Rev. Lett. - Feb. 27, 2020



Ever since Nikuradse’s experiments on turbulent friction in 1933, there have been theoretical attempts to describe his measurements by collapsing the data into single-variable functions. However, this approach, which is common in other areas of physics and in other fields, is limited by the lack of rigorous quantitative methods to...

Read more

OUR RESEARCH

research

Complex Systems

Cells, ecosystems and economies are examples of complex systems. In complex systems, individual components interact with each other, usually in nonlinear ways, giving rise to complex networks of interactions that are neither totally regular nor totally random. Partly because of the interactions themselves and partly because of the interaction's topology, complex systems cannot be properly understood by just analyzing their constituent parts.

research

Data Science

Humans generate information at an unprecedented pace, with some estimates suggesting that, in a year, we now produce on the order of 10^21 bytes of data, millions of times the amount of information in all the books ever written. Processing this "data deluge", as some have called it, requires new tools and new approaches at the interface of statistics, statistical and machine learning, network theory and statistical physics.

research

Multidisciplinarity

Our goal is to push forward the boundaries of science. We are interested in addressing fundamental questions in all areas of science including natural, social and economic sciences. We put a special emphasis in the development of tools that aid scientific discovery through understanding and quantification of a specific phenomenon. To this end we have assembled a multidisciplinary team and have established solid collaborations with experts in biology, social sciences, ecology and economics.